• Title/Summary/Keyword: 재생발전

Search Result 1,860, Processing Time 0.032 seconds

Development of the Retrieval System of Information Flow for a Large-scale and Complex Construction Project using Information Transfer Relationship on Business Process (업무 정보전달관계를 이용한 대형복합건설사업의 정보흐름 색시스템 개발)

  • Shin, Jinho;Lee, Hyun-Soo;Park, Moonseo;Yu, Jung-Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.6
    • /
    • pp.84-93
    • /
    • 2012
  • The information generated from large and complex construction projects transfer and evolve in long-term business cycle. Therefore, while there is any problem, such as delay, the cause of the problem might relate to the previous business process rather than where it arises. However, for complex project players and business relationships, it is unsuitable to search an information flow using traditional retrieval methods. This research addresses a relationship-based information search system to analyze the information flow in large-scale and complex construction projects. First, we identified the components of the information retrieval system customizing for a large-scale complex construction projects, and then developed the inference algorithm which define the relationship between business processes. For the validation, we applied the system on a business information system of urban regeneration projects and suggested some application using information flow retrieval system for project players and project managers. Using the system, players are easy to prepare for their work process and managers can define the causal flow of the problem.

Maximum Power Point Tracking operation of Thermoelectric Module without Current Sensor (전류센서가 없는 열전모듈의 최대전력점 추적방식)

  • Kim, Tae-Kyung;Park, Dae-Su;Oh, Sung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.436-443
    • /
    • 2017
  • Recently, the development of new energy technologies has become a hot topic due to problems,such as global warming. Unlike renewable energy technologies, such as solar energy generation, solar power, and wind power, which are optimized to achieve medium or above output power, the output power of energy harvesting technology is very small and has not received much attention. On the other hand, as the mobile industry has been revitalized recently, the utility of energy harvesting technology has been reevaluated. In addition, the technology of tracking the maximum power point has been actively researched. This paper proposes a new MPPT(Maximum Power Point Tracking) control method for a TEM(thermoelectric module) for load resistance. The V-I curve characteristics and internal resistance of TEM were analyzed and the conventional MPPT control methods were compared. The P&O(Perturbation and Observation) control method is more accurate, but it is less economical than the CV (Constant Voltage)control method because it usestwo sensors to measure the voltage and current source. The CV control method is superior to the P&O control method in economic aspects because it uses only one voltage sensor but the MPP is not matched precisely. In this paper, a method wasdesigned to track the MPP of TEM combining the advantages of the two control method. The proposed MPPT control method wasverified by PSIM simulation and H/W implementation.

Design and fabrication of a 300A class general-purpose current sensor (300A급 일반 산업용 전류센서의 설계 및 제작)

  • Park, Ju-Gyeong;Cha, Guee-Soo;Ku, Myung-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.1-8
    • /
    • 2016
  • Current sensors are used widely in the fields of current control, monitoring, and measuring. They have become more popular with the increasing demand for smart grids in a power network, generation of renewable energy, electric cars, and hybrid cars. Although open loop Hall effect current sensors have merits, such as low cost, small size, and weight, they have low accuracy. This paper describes the design and fabrication of a 300A open loop current sensor that has high accuracy and temperature performance. The core of the current sensor was calculated numerically and the signal conditioning circuits were designed using circuit analysis software. The characteristics of the manufactured open loop current sensor of 300 A class was measured at currents up to 300 A. According to the test of the current sensor, the accuracy error and linearity error were 0.75% and 0.19%, respectively. When the temperature compensation was carried out with the relevant circuit, the temperature coefficients were less than $0.012%/^{\circ}C$ at temperatures between $-25^{\circ}C$ and $85^{\circ}C$.

Relationship between Progressive culture and arts activities and social transformation (진보적 문화예술 활동과 사회변화의 상관성 -광주민주화운동을 중심으로-)

  • LEE, Seung-Kwon;Yun, Man-sik
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.3
    • /
    • pp.41-50
    • /
    • 2018
  • The present article focuses on the cultural arts, the role and functions of people as intermediate to carry out the revitalization of memory. Most of the basic cultural activities and events sparked from the cardinal point of the democratization of Gwangju and the interwoven relationships this created. In other words, the events leading to Gwangju democratization movement have derived from democratic culture and art and they contributed to change and influence South Korea's revolutionary movements. As far as clarifying the concept of culture is concerned, the idea of culture is too wide to encompass it so we aim to narrow it down to the special events of 5.18 democratization movements which launched the national transformation of the cultural stage and the development of democracy in South Korea. Through this, the movement of popular culture and popular arts fostered the revolution of society. Moreover, the value of the 5.18 movement for democratization stems from democracy, human rights, the universal value of peace and so many efforts were made by popular artists until it became upgraded as a national commemoration day. Raising the people's awareness that culture could change the course of history is still necessary so that popular art and culture play a central role in people's lives. In order to fulfill the people's inherent hope it is necessary to promote aesthetic values and a continuous revolution in societal practices.

Analysis on Weight Proportion of Eco-friendly Elements for the Development of Low-Carbon Green City : Case of Eco-Environment Certified Apartment Housing Complexes in the Metropolitan Newtown (저탄소 녹색도시 조성을 위한 친환경 요소의 비중도 분석: 수도권 신도시내 친환경 인증 아파트단지 사례)

  • Jung, Sung-Hoon;Kim, Jeong-In
    • Journal of Environmental Policy
    • /
    • v.10 no.3
    • /
    • pp.21-48
    • /
    • 2011
  • The paper affirms the weight proportion concept as an element, which could be empirically analyzed quantitatively through the developmental expansion of qualitative empirical analysis on taxonomy that is required for the construction Low-Carbon Green Cities and their eco-friendly elements, such as a pleasant residential environment The weight proportion concept is proposed as a new measure to identify eco-friendly elements and as an objective assessment indicators. To perform an empirical analysis, surveys were first given to the residents of Metropolitan Newtown (50 persons) and outside experts (50 persons) for the total of 100 persons. Second, the paper surveyed 74 sites of Eco-Environmental Certified Apartment Housing Complexes. Upon analysis of eco-friendly elements by their type and total weight, the largest weight proportion was expressed in the interior and eco-environmental elements, carbon-decrease types, and carbon-absorption types. The results of this paper confirm recent positive sentiments and preference toward a variety of future-oriented and sustainable eco-friendly elements like the eco-housing and new renewable energy, In addition, the paper affirmed the new housing trend towards constructing eco-friendly elements, such as carbon-decrease and carbon-absorption, that induce long-term investments, despite their need for higher investments.

  • PDF

An Interoperable Mapping Model between SEP 2.0 & OpenADR 2.0b for ICT Grid Convergence (ICT 전력 융합을 위한 SEP 2.0과 OpenADR 2.0b간의 상호운용 매핑 모델)

  • Choi, Min-Young;Lee, June-Kyoung;Lee, Kyoung-Hak
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.8
    • /
    • pp.41-49
    • /
    • 2017
  • The 'NIST Framework and Road Map for Smart Grid Interoperability Standards' proposes an architecture framework to secure the direction of development and standard interoperability of smart grid and provides a list of identified standard, standard cyber security strategies, and certification framework. In particular, SEP 2.0 and OpenADR 2.0 are the examples. SEP 2.0 and OpenADR 2.0 can functionally link HEMS and Smart Grid, but interoperability standards between the two protocols are not planned in above document. The OpenADR Alliance also announced that work is underway to define mapping tables for interoperability between OpenADR 2.0 and SEP 2.0, but no information is yet available. Therefore, In this paper, in developing energy efficiency improvement HEMS, we propose a mapping model that supports syntactic and semantic founded interoperability between SEP 2.0 and OpenADR 2.0b for ICT grid convergence based on the standard specification document of each protocol and confirmed through an example of the semantic mapping function based on the demand response service scenario.

Design Optimization of Heat Exchangers for Solar-Heating Ocean Thermal Energy Conversion (SH-OTEC) Using High-Performance Commercial Tubes (고성능 상용튜브를 사용한 태양열 가열 해양온도차발전용 열교환기 설계 최적화)

  • Zhou, Tianjun;Nguyen, Van Hap;Lee, Geun Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.9
    • /
    • pp.557-567
    • /
    • 2016
  • In this study, the optimal design of heat exchangers, including the evaporator and condenser of a solar-heating ocean thermal energy conversion (SH-OTEC), is investigated. The power output of the SH-OTEC is assumed to be 100 kW, and the SH-OTEC uses the working fluid of R134a and high-performance commercial tubes. The surface heat transfer area and the pressure drop were strongly dependent on the number of tubes, as well as the number of tube passes. To solve the reciprocal tendency between the heat transfer area and pressure drop with respect to the number of tubes, as well as the number of tube passes, a genetic algorithm (GA) with two objective functions of the heat transfer area (the capital cost) and operating cost (pressure drop) was used. Optimal results delineated the feasible regions of heat transfer area and operating cost with respect to the pertinent number of tubes and tube passes. Pareto fronts of the evaporator and condenser obtained from multi-objective GA provides designers or investors with a wide range of optimal solutions so that they can select projects suitable for their financial resources. In addition, the surface heat transfer area of the condenser took up a much higher percentage of the total heat transfer area of the SH-OTEC than that of the evaporator.

200kW Turbine Development for Organic Rankine Cycle System (200kW급 ORC용 터빈 개발)

  • Lim, Hyung-Soo;Choi, Bum-Seog;Park, Moo-Ryong;Park, Jun-Young;Yoo, Il-Su;Seo, Jeong-Min;Hwang, Soon-Chan;Yoon, Eui-Soo;Han, Sang-Jo
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.107-113
    • /
    • 2013
  • This paper presents the process of turbine development for Organic Rankine Cycle(ORC) system. Development of turbine for ORC system is hot issue in the electric generation market due to the characteristic of organic refrigerant which the evaporate temperature is lower than general refrigerant. Recently, the industry have an interest about ORC turbine development in Korea, and they presented numerous research results. In developing the turbine, several processes can be considered. However, there was few document about ORC turbine development because of the trade secret. This paper can be used as a reference in developing ORC turbine.

Study on Utilization and Prospect of Lignocellulosic Bioethanol in ASEAN Countries (주요 ASEAN 국가의 목질계 바이오에탄올의 활용 및 전망에 관한 연구)

  • Heo, Su Jung;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.588-598
    • /
    • 2017
  • Currently, bioethanol, a fuel additive for transportation, is produced mainly by using biomass (first generation) such as corn and sugar canes. First generation biomass can cause various problems in terms of increase in agricultural prices and ethical reasons. To address these problems, a nonedible lignocellulosic biomass can be utilized. Agricultural byproducts such as straw, bagasse, and forest byproducts from the wood processing industry. Therefore, production of wood based bioethanol can be an effective utilization route of second generation biomass, and its raw materials are more abundant than first generation resources. Furthermore, it is possible to secure cheap raw materials. One of the biggest advantages of using biofuels is that it contributes to the reduction of greenhouse gases by minimizing the environmental impact, unlike fossil fuels. In this study, we investigated the greenhouse gas reduction effects that can be achieved through the use of Lignocellulosic bioethanol and government policies on renewable energy currently being implemented in ASEAN countries (Indonesia, Malaysia, Thailand and the Philippines). In these four countries, policies and incentives related to biofuels have been developed. It is expected that the reduction ratio of carbon dioxide emission and the mixed biofuel will be gradually increased in the future.

The Necessity of Structural Performance Informations of Sandwich Panels for The Stability of Industry Building using Sandwich Panel as Roof Assemblies. (지붕하중 증가에 따른 공장건물 안정성확보를 위한 지붕외장재의 구조성능정보의 필요성)

  • Kang, Kyung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.725-730
    • /
    • 2017
  • The strength ratio of the main structures of buildings gradually increasing, due to the advances made in analysis and cost saving techniques. In this study, to examine the stability of industry buildings using sandwich panels as roof assemblies, we examine the changes in the moment strength ratio of the main structures caused by increasing the roof load. This study adopts the PEB structure and three H-steel structure as the structural analysis models. In the case where the additional load exceeds about 11% of the roof design load, the strength ratio exceeds 1 for the main structure. In the case where the additional load exceeds about 36%(of the roof design load), the working moment exceeds the plastic moments, which leads to major damage to the structure. This study compares 1) the maximum load according to the purlin spaces, 2) the maximum load by KS, and 3) the maximum load calculated from the test results of the manufacturer.The maximum bearing load of the panels determined by all three methods exceeds the structure failure threshold load of the main structure. This study provides evidence that an unexpected increase in the roof load might cause the whole structure to collapse, due to the failure of the main structural members, before the failure of the roof assemblies. Therefore, information on the structural performance of the sandwich panels is required for the structural design, and the sandwich panels should be considered to be an integral part of the overall structural design.