• Title/Summary/Keyword: 재료관리

Search Result 1,308, Processing Time 0.032 seconds

An Analysis of Design Parameters and Optimal Design for Anchors with Wide CFRP Plate (대형 CFRP Plate용 정착구의 설계요소분석 및 최적설계)

  • Kim, Hyung-Joon;Chung, Heung-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.102-112
    • /
    • 2020
  • In this study, in order to design a wedge-type anchor that can hold an wide carbon plate with a width of 100 mm or more that can be used in a bridge structure, the mechanical behaviors are evaluated based on the main design variables such as the angle of the wedge and the coefficient of friction between the guide and the wedge. The stress state of the carbon plate was calculated by numerical analysis method for each design variable, and the performance of the anchor in the critical state was evaluated according to the failure criteria for composite material, and the optimal design specifications of the anchor were determined based on numerical results. The performance of the optimally designed anchor was verified through actual experiments, and the results of this study are considered to be useful for the optimal design of the CFRP plate anchor to reinforce large structures.

Effect of Load Velocity on Seismic Performance of Steel Beam-column Connection (하중속도가 강구조 보-기둥 접합부 내진성능에 미치는 영향)

  • Lee, Ki-Won;Oh, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.182-192
    • /
    • 2022
  • Brittle feature is one of the fracture behaviors of structure s and has a great influence on the seismic performance of structure materials. The load velocity acts as one of the main causes of brittle fracture, and in particular, in situations such as earthquakes, a high load velocity acts on buildings. However, most of the seismic performance evaluation of the domestic and external steel connections is conducted through static experiments. Therefore, there is a possibility that brittle fracture due to factors such as degradation of material toughness and reduction of maximum deformation rate due to high load velocity during an earthquake was not sufficiently considered in the existing seismic performance evaluation. This study conducts a static test at a low load velocity according to the existing experimental method and a dynamic test at a high load velocity using a shaking table, respectively. It compares and analyzes the fracture shape and structural performance according to the results of each experiment, and finally analyzes the effect of the load velocity size on the seismic performance of the connection.

Material Properties of 3D Printed Mortars Produced with Synthetic Fibers and Biopolymers (합성섬유 및 바이오 폴리머를 혼입한 3D 프린팅 모르타르의 재료특성)

  • Hyo-Jung Kim;Byung-Jae Lee;Yun-Yong Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.4
    • /
    • pp.78-85
    • /
    • 2023
  • In this study, synthetic fibers were applied to reduce shrinkage cracks that may occur in mortar produced by 3D printer. We used a biopolymer in powder form made from cactus stem (CS) as an admixture. The material properties of 3D printed mortar were experimentally evaluated. Replacing methylcellulose(MC) with 10% CS increases compressive strength by 9.84-23.92% regardless of the casting method. In addition, regardless of the casting method, shrinkage change, freeze-thaw resistance, and crack resistance are more effective than Plain. Incorporation of CS increases the polysaccharide macromolecular structure and improves durability. Mortars reinforced with synthetic fibers do not affect compressive strength and freeze-thaw. It is also effective for shrink deformation and crack resistance. Incorporating CS and fibers from 3D-printed mortar was found to be effective for durability and crack resistance.

Evaluation of applicability of depth measurement method for vegetation streams using drone-based hyperspectral image (드론기반 초분광영상을 활용한 식생유무에 따른 하천 수심산정 기법 적용성 평가)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.88-88
    • /
    • 2022
  • 하천법 개정 및 수자원의 조사·계획 및 관리에 관한 법률 제정으로 하상변동조사를 정기적으로 실시하는 것이 의무화 되었고, 지자체가 계획적으로 수자원을 관리할 수 있도록 제도가 마련되고 있다. 하상의 지형측량은 직접 측량할 수 없기 때문에 수심 측량을 통해 간접적으로 이루어지고 있으며, 그 방법은 레벨측량이나 음향측심기를 활용한 접촉식으로 이루어지고 있다. 접촉식 수심측량법은 자료수집이 제한적이기 때문에 공간해상도가 낮고 연속적인 측량이 불가능하다는 한계가 있어 최근에는 LiDAR나 초분광영상을 이용한 원격탐사를 이용한 수심측정 기술이 개발되고있다. 개발된 초분광영상을 이용한 수심측정 기술은 접촉식 조사보다 넓은 지역을 조사할 수 있고, 잦은 빈도로 자료취득이 용이한 드론에 경량 초분광센서를 탑재하여 초분광영상을 취득하고, 최적 밴드비 탐색 알고리즘을 적용해 수심맵 산정이 가능하다. 기존의 초분광 원격탐사 기법은 드론의 경로비행으로 획득한 초분광영상을 면단위의 영상으로 정합한 후 특정 물리량에 대한 분석이 수행되었으며, 수심측정의 경우 모래하천을 대상으로 한 연구가 주를 이루었으며, 하상재료에 대한 평가는 이루어지지 않았었다. 본 연구에서는 기존의 초분광영상을 활용한 수심산정 기법을 식생이 있는 하천에 적용하고, 동일지역에서 식생을 제거한 후의 2가지 케이스에 대해서 시공간(Spatio-temporal)초분광영상과 단면초분광영상에 모두 적용해 보았다. 연구결과, 식생이 없는 경우의 수심산정이 더 높은 정확도를 보였으며, 식생이 있는 경우에는 식생의 높이를 바닥으로 인식한 수심이 산정되었다. 또한, 기존의 단면초분광영상을 이용한 수심산정뿐만 아니라 시공간 초분광영상에서도 수심산정의 높은 정확도를 보여 시공간 초분광영상을 활용한 하상변동(수심변동) 추적의 가능성을 확인하였다.

  • PDF

Ship Collision Analysis of Structures (구조물의 선박충돌 해석)

  • Lee, Seong-Lo;Bae, Yong-Gwi;Lee, Gye-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.87-96
    • /
    • 2006
  • A ship collision analysis by finite element method is performed considering the effects of mass and speed of ship and material and shape of structures to analyze the dynamic characteristics by ship collision. From this analysis, collision load-time history and damage of ship and structures are obtained. In this study, results of finite element analysis are compared with previous studies in USA, Japan and some countries of Europe. Dynamic characteristics are different from each other according to interaction between ship and structures. It seems that there are lots of factor to have effects on the ship-structures interaction. Because little information is available on the behavior of the inelastic deformation of materials and structures during the type of dynamic impacts associated with vessel impact, assumptions based on experience and sound engineering practice should be substituted. Therefore more researches on the interaction between ship and structures are required.

An Experimental Study on the Fatigue Flexural Bonding Characteristic of Concrete Beam Reinforced with GFRP Rebar (GFRP Rebar로 보강된 콘크리트보의 피로 휨·부착성능에 관한 실험적 연구)

  • Oh, Hong Seob;Sim, Jong Sung;Kang, Tae-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.101-108
    • /
    • 2008
  • This study is to examine bond strength of beam reinforced with GFRP rebar under 4-point fatigue bending test by adopting BRITISH STANDARD. The variables were made to have bonding length of 5times(5db), and 15times(15db) of the nominal diameter of GFRP rebar and were done to analyze the relationship between the bonding strength and the slip. In the result of the test, pull-out failure was dominant in the 5db specimen, patterns of the pull-out failure and concrete shear failure appeared in the 15db specimen showed only concrete shear failure at the end of bonding length. Therefore, The strain development consist of three different stage : A rapid increases form 0 to about 10% of total fatigue life. A uniform increases form 10% to about 70%~90%. Then a rapid increases until failure, if failure takes place. It seems that stress level has not influence on the secant modules of elasticity. And also according to the outcome the existing strengthening method came out to be the most superiority in S-N graphs.

Effect of the Broken Red Bricks on the Mechanical Properties of Reinforced Concrete Beams (부순 적벽돌 혼입량에 따른 철근콘크리트 보의 역학적 특성에 관한 연구)

  • Kim, Jeong Sup;Shin, Yong Seok;Cho, Cheol Hee;No, Sung Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.83-90
    • /
    • 2008
  • The purpose of this study is to attempt to use broken red brick, which is categorized as impurities of circular aggregate to thick aggregate, as a replacement for concrete. Through the material test and performance test for each mixing rate of the broken red brick (0%, 30%, 60%), the following conclusion was reached by studying the material and structural characteristics of circular aggregate to the concrete. Even though broken red brick, which is categorized as impurities of circular aggregate, is mixed 30% with normal rubble, the compression strength, intensity strength, and curving strength was similar to that of concrete that uses normal rubble. Therefore, concrete beam made with broken red brick can be applied to the real construction field. Also, the study regarding the cutting test of the concrete that uses broken red brick and regarding applying and mixing admixture that can increase the ductility factor will be required in the future.

Evaluation of the Bonding Behavior of the Rehabilitation Method Applying Carbon Fiber Subjected to the Variation of Environmental Condition (탄소섬유 접착 보강공법의 환경변화에 따른 부착특성 평가)

  • Han, Cheon Goo;Byun, Hang Yong;Park, Yong Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.67-74
    • /
    • 2008
  • This paper provides the test results of bonding behavior of the interface between concrete substrate and carbon fiber in the rehabilitation method applying carbon fiber with epoxy based resin adhesive. The difference in each components was gradually increased subjected to the repetition of temperature variation, regardless of the strength of the substrate concrete, while the ultrasonic interface between each component occurred. An increase in difference of the temperature resulted in a decrease in bond strength of each component. Associated failure mode was shown to be interfacial failure and substrate concrete failure. No remarkable changes were found in the deformation and ultrasonic velocity of each component until the four cycles of the dry and moisture test. Hence, the moisture condition may not affect the bonding behavior of each component. After the repetition of dry and moisture test, corresponding bond strength was reduced to 40% of that before test. For the effect of freeze and thaw test, the cycle of freeze and thaw within 4 cycles resulted in debonding of each component.

Fundamental Study on Earthwork Quality Control Based on Intelligent Compaction Technology (지능형 다짐기술을 통한 토공사 품질관리를 위한 기초 연구)

  • Baek, Sung-Ha;Kim, Jin-Young;Cho, Jin-Woo;Kim, Namgyu;Jeong, Yeong-Hoon;Choi, Changho
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.45-56
    • /
    • 2020
  • In this paper, intelligent compaction (IC) technology and the earthwork quality control specifications based on IC were analyzed, and the field study was conducted to investigate the relationship between the representative IC value CMV (Compaction Meter Value) and spot test results (plate bearing test and field density test). As the number of roller passes increased, both the CMV and spot test results increased. However, point-by-point comparison between CMV and spot test results yielded poor quality correlations; this is because the ununiform stiffness of the underlying layer and the moisture content of the lift layer affected the CMV and spot test results, respectively. Most international specifications related to IC requires knowledge of the IC values and their relationships with the soil properties obtained by the traditional spot tests. Therefore, for the successful implementation of intelligent compaction technology into earthwork construction practice, the number of roller passes as well as the lift thickness and the moisture content of the soil should be carefully considered.

A Study on Managing of Metal Loss by Flow-Accelerated Corrosion in the Secondary Piping of CANDU Nuclear Plants (CANDU형 원전 2차 배관의 침부식 감육 관리방법에 관한 연구)

  • 심상훈;송정수;윤기봉;황경모;진태은;이성호
    • Journal of Energy Engineering
    • /
    • v.11 no.1
    • /
    • pp.18-25
    • /
    • 2002
  • One of the most serious concern in nuclear power plant piping maintenance is thickness reduction due to flow-accelerated corrosion (FAC). Since the FAC occurs under specific conditions of pH, dissolved oxygen, temperature, flow velocity, steam quality of the fluid and materials and geometry of the piping, a systematic approach is required for managing the FAC problem. In this study, construction of a secondary piping database, analyzing the FAC rate using the database and predicting the residual life was performed for a domestic CANDU nuclear power plant. Also FAC mechanism and factors affecting FAC were reviewed. By showing a case study on analysis for a pipe line between a separator and a flash tank, a procedure for managing FAC problem is suggested. The procedure proposed in this paper can be widely applied to the secondary piping of other domestic nuclear polder plants.