• 제목/요약/키워드: 재귀적 학습

검색결과 34건 처리시간 0.028초

RFA: Recursive Feature Addition Algorithm for Machine Learning-Based Malware Classification

  • Byeon, Ji-Yun;Kim, Dae-Ho;Kim, Hee-Chul;Choi, Sang-Yong
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권2호
    • /
    • pp.61-68
    • /
    • 2021
  • 최근 악성코드와 정상 바이너리를 분류하기 위해 기계학습을 이용하는 기술이 다양하게 연구되고 있다. 효과적인 기계학습을 위해서는 악성코드와 정상 바이너리를 식별하기 위한 Feature를 잘 추출하는 것이 무엇보다 중요하다. 본 논문에서는 재귀적인 방법을 이용하여 기계학습에 활용하기 위한 Feature 추출 방법인 RFA(Recursive Feature Addition) 제안한다. 제안하는 방법은 기계학습의 성능을 극대화 하기 위해 개별 Feature를 대상으로 재귀적인 방법을 사용하여 최종 Feature Set을 선정한다. 세부적으로는 매 단계마다 개별 Feature 중 최고성능을 내는 Feature를 추출하여, 추출한 Feature를 결합하는 방법을 사용한다. 제안하는 방법을 활용하여 Decision tree, SVM, Random forest, KNN등의 기계학습 알고리즘에 적용한 결과 단계가 지속될수록 기계학습의 성능이 향상되는 것을 검증하였다.

신경망을 이용한 연속 숫자음 인식에 관한 연구 (A Study On Continuous Digits Recognition Using the Neural Network)

  • 이성권;김순협
    • 한국음향학회지
    • /
    • 제17권4호
    • /
    • pp.3-13
    • /
    • 1998
  • 본 논문은 음성 다이어링 시스템을 구현하기 위한 한국어 단독 숫자음 및 연속 숫 자음 인식에 관한 것이다. 단독 숫자음의 인식은 미지의 입력 음성을 재귀 신경망을 이용하 여 모델링된 각 모델에 인가하고, 신경 회로망의 출력 노드의 상태열을 검사하여 적절한 상 태 전이를 하며 최고의 확률값을 출력하는 모델을 인식된 결과로 출력한다. 연속 숫자음의 인식은 미지의 연속 숫자음을 재귀 신경 회로망을 이용한 연속 숫자음 모델에 입력하고, 신 경 회로망의 출력에 대하여 적절한 상태 전이에 대한 검사와 레벨 빌딩(Level Building)을 수행하여 최소의 오차를 가지는 모델열을 인식된 결과로 출력한다. 재귀 신경 회로망을 이 용하여 음절 모델을 만드는 과정에서 재귀 노드는 예상치가 주어지지 않으므로 신경 회로망 의 학습에서 제외되어 현저한 학습 속도의 저하를 가져온다. 따라서 본 논문에서는 재귀 신 경 회로망의 학습 속도를 향상시키기 위한 2가지 방법을 제안 한다. 첫 번째는 재귀 신경 회로망의 재귀 노드의 예상치를 실험적으로 주어줌으로써 학습 속도의 향상을 도모하였다. 두 번째는 음절 모델의 출력노드의 개수와 음절 모델의 세그먼트 경계를 알고리듬을 이용하 여 자동적으로 조절하였다. 실험결과, 단독어의 경우 음절 '에'에 포함하는 한국어 11개의 숫 자음에 대하여 화자 종속의 경우 97.3%, 화자 독립의 경우 80.5%의 인식률을 얻었으며, 연 속 숫자음의 경우는 21종류의 연속 숫자음에 대하여 화자 종속에서 88.2%, 화자 독립의 경 우 81.3%의 인식률을 얻을 수 있었다.

  • PDF

물리적 지시 표현 추출 및 처리를 위한 신경망의 재귀적 사용에 대한 고찰 (Analysis over Extracting Physical Referring Expressions by Recursive Application over Neural Network)

  • 구상준;이규송;이근배
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2012년도 제24회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.142-147
    • /
    • 2012
  • 본 논문에서는 신경망을 재귀적으로 사용하여 문장에서 지시 표현을 추출하고 분석하는 방법에 대해서 제안한다. 임의의 문장이 들어올 때, 문장을 구성하는 각 단어들은 통사론적 자질 벡터와 의미론적 자질 벡터로 나눌 수 있다. 이들 벡터들의 쌍을 인자로써 입력받는 신경망 구조를 제시할 수 있으며, 신경망의 출력 결과는 다시 재귀적으로 쌍인자 신경망에 입력으로써 주입된다. 신경망을 재귀적으로 학습시킴으로써, 문장 내의 지시 표현을 추출할 수 있다. 쌍인자 신경망 파싱 모델의 성능을 측정했고, 제안한 모델의 문제점과 가능성에 대해서 관찰하였다.

  • PDF

토마토 잎 병해 분류를 위한 최소 라벨 데이터 활용: YOLOv8 기반 재귀적 학습 방식을 통한 접근 (Utilizing Minimal Label Data for Tomato Leaf Disease Classification: An Approach through Recursive Learning Based on YOLOv8)

  • 이준혁;김남형
    • 한국빅데이터학회지
    • /
    • 제9권1호
    • /
    • pp.61-73
    • /
    • 2024
  • 클래스 불균형은 딥러닝 작업에서 중요한 문제 중 하나이며, 이는 특히 데이터가 제한적인 분야에서 두드러진다. 본 연구에서는 토마토 잎의 병해를 효과적으로 분류하기 위해 최소한의 라벨 데이터만을 활용하는 새로운 접근법을 제안한다. 이를 위해 YOLOv8 모델을 사용한 재귀적 학습 방식을 도입하였다. 학습 데이터에 대한 이미지 탐지 예측 결과를 다시 학습 데이터로 활용함으로써 라벨 데이터의 개수를 점진적으로 증가시켰다. 이 방식은 기존의 데이터 증강 및 업-다운 샘플링 기법과는 달리 실제 데이터의 활용도를 극대화하여 클래스 불균형 문제를 보다 근본적으로 해결하려 한다. 이를 통해 확보된 라벨 데이터를 바탕으로, 토마토잎을 추출하고 EfficientNet 모델을 이용해 병해를 분류했다. 이 과정을 통해 98.92%라는 높은 정확도를 달성하였다. 특히, 가장 적은 데이터를 가진 클래스인 잎마름역병 병해에서 기존 대비 12.9% 향상된 결과를 확인할 수 있었다. 이 연구는 데이터 불균형 문제를 해결하는 동시에, 높은 정확도로 병해를 분류할 수 있는 방법론을 제시함으로써 다른 작물에서도 적용될 수 있을 것으로 기대된다.

하천에 유입된 유해화학물질의 역추적을 위한 기계학습 프레임워크 개발 (Development of machine learning framework to inverse-track a contaminant source of hazardous chemicals in rivers)

  • 권시윤;서일원
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.112-112
    • /
    • 2020
  • 하천에서 유해화학물질 유입 사고 발생 시 수환경 피해를 최소화하기 위해 신속한 초기 대응이 필요하다. 따라서, 본 연구에서는 수환경 화학사고 대응 시스템 구축을 위해 하천 실시간 모니터링 지점에서 관측된 유해화학물질의 농도 자료를 이용하여 발생원의 유입 지점과 유입량을 역추적하는 프레임워크를 개발하였다. 본 연구에서 제시하는 프레임워크는 첫 번째로 하천 저장대 모형(Transient Storage Zone Model; TSM)과 HEC-RAS 모형을 이용하여 다양한 유량의 수리 조건에서 화학사고 시나리오를 생성하는 단계, 두번째로 생성된 시나리오의 유입 지점과 유입량에 대한 시간-농도 곡선 (BreakThrough Curve; BTC)을 21개의 곡선특징 (BTC feature)으로 추출하는 단계, 최종적으로 재귀적 특징 선택법(Recursive Feature Elimination; RFE)을 이용하여 의사결정나무 모형, 랜덤포레스트 모형, Xgboost 모형, 선형 서포트 벡터 머신, 커널 서포트 벡터 머신 그리고 Ridge 모형에 대한 모형별 주요 특징을 학습하고 성능을 비교하여 각각 유입 위치와 유입 질량 예측에 대한 최적 모형 및 특징 조합을 제시하는 단계로 구축하였다. 또한, 현장 적용성 제고를 위해 시간-농도 곡선을 2가지 경우 (Whole BTC와 Fractured BTC)로 가정하여 기계학습 모형을 학습시켜 모의결과를 비교하였다. 제시된 프레임워크의 검증을 위해서 낙동강 지류인 감천에 적용하여 모형을 구축하고 시나리오 자료 기반 검증과 Rhodamine WT를 이용한 추적자 실험자료를 이용한 검증을 수행하였다. 기계학습 모형들의 비교 검증 결과, 각 모형은 가중항 기반과 불순도 감소량 기반 특징 중요도 산출 방식에 따라 주요 특징이 상이하게 산출되었으며, 전체 시간-농도 곡선 (WBTC)과 부분 시간-농도 곡선 (FBTC)별 최적 모형도 다르게 산출되었다. 유입 위치 정확도 및 유입 질량 예측에 대한 R2는 대부분의 모형이 90% 이상의 우수한 결과를 나타냈다.

  • PDF

하위 훈련 성과 융합을 위한 순환적 계층 재귀 모델 (A Model of Recursive Hierarchical Nested Triangle for Convergence from Lower-layer Sibling Practices)

  • 문효정
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권2호
    • /
    • pp.415-423
    • /
    • 2018
  • 최근, 컴퓨터 분야의 기계 학습(Machine Learning)과 딥러닝(Deep Learning) 등 컴퓨터 관련 학습이 각광을 받고 있다. 이들은 인공 신경망(Artificial Neural Network)을 이용하여 가장 하위 레벨로부터 학습을 시작하여, 최상위 레벨까지 그 결과를 전달하여 최종 결과를 산출하는 방식이다. 하위레벨로부터의 체계적인 학습을 통한 효과적인 성장 및 교육 방안에 대한 연구는 다양한 분야에서 이루어지고 있으나, 체계적인 규칙과 방법에 기반한 모델은 찾아보기가 힘들다. 이에, 본 논문에서는 성장 및 융합 모델인, TNT 모델(Transitive Nested Triangle Model)을 처음으로 제안한다. 제안하는 모델은 기하학적인 형태를 통해 형성된 각 기능들이 유기적 계층 관계를 형성하여, 상위로 성장 및 융합하면서, 그 결과가 반복 사용되는 순환적 재귀 모델이다. 즉, '수평적 형제 병합에 이은 상위로의 융합(Horizontal Sibling Merges and Upward Convergence)'의 분석적 방법이다. 이러한 모델은 공학, 디지털공학, 인문학, 예술학 등에 모두 적용될 수 있는 기본기적 이론으로, 본 연구에서는 제안하는 TNT 모델을 설명하는 것에 그 초점을 둔다.

재귀분할을 이용한 새로운 점진적 인스턴스 기반 학습기법 (A New Incremental Instance-Based Learning Using Recursive Partitioning)

  • 한진철;김상귀;윤충화
    • 정보처리학회논문지B
    • /
    • 제13B권2호
    • /
    • pp.127-132
    • /
    • 2006
  • 인스턴스 기반 학습의 대표적인 알고리즘인 k-NK(K-Nearest Neighbors)은 단순히 전체 학습패턴을 메모리에 저장한 다음, 분류할 때 학습 패턴들과의 거리를 계산하여 가장 가까운 학습패턴의 클래스로 테스트 패턴을 분류한다. K-NN 기법은 만족할 만한 분류성능을 보여주지만, 학습패턴의 개수가 늘어나면 메모리와 분류 시간이 증가하는 문제점을 가지고 있다. 그러므로, 메모리의 효율적 사용과 분류 시간을 단축시키기 위한 다양한 연구들이 발표되었으며, 그 대표적인 예로 NGE(Nested Generalized Exemplar) 이론을 들 수 있다. 본 논문에서는 학습패턴의 집합으로부터 대표패턴을 생성하는 RPA(Recursive Partition Averaging)기법과 점진적으로 대표패턴을 추출하는 IRPA(Incremental RPA)기법을 제안하였다. RPA기법은 전체 학습패턴의 공간을 재귀적으로 분할하면서 대표패턴을 생성하며, IRPA 기법은 RPA 기법의 특성상 패턴의 특징 개수가 많은 경우, 과도한 분할로 인하여 생성되는 많은 개수의 대표패턴을 줄이기 위하여 점진적으로 대표패턴을 추출하는 알고리즘이다. 본 논문에서 제안한 기법은 기존의 k-NN 기법과 비교하여 현저하게 줄어든 대표패턴을 이용하석 유사한 분류 성능을 보여주며, NGE 이론을 구현한 EACH 시스템과 비교하여 탁월한 분류 성능을 보여준다.

이진 삼차 재귀 신경망과 유전자 알고리즘을 이용한 문맥-자유 문법의 추론 (Inference of Context-Free Grammars using Binary Third-order Recurrent Neural Networks with Genetic Algorithm)

  • 정순호
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권3호
    • /
    • pp.11-25
    • /
    • 2012
  • 이 논문은 이진 삼차 재귀 신경망(Binary Third-order Recurrent Neural Networks: BTRNN)에 유전자 알고리즘을 적용하여 문맥-자유 문법을 추론하는 방법을 제안한다. BTRNN은 각 입력심볼에 대응되는 재귀 신경망들의 다층적 구조이고 외부의 스택과 결합된다. BTRNN의 매개변수들은 모두 이진수로 표현되며 상태 전이와 동시에 스택의 한 동작이 실행된다. 염색체로 표현된 BTRNN들에 유전자 알고리즘을 적용하여 긍정과 부정의 입력 패턴들의 문맥-자유 문법을 추론하는 최적의 BTRNN를 얻는다. 이 방법은 기존의 신경망 이용방법보다 적은 학습량과 적은 학습회수로 작거나 같은 상태 수를 갖는 BTRNN을 추론한다. 또한 문법 표현의 염색체 이용방법보다 parsing과정에서 결정적인 상태전이와 스택동작이 실행되므로 입력 패턴에 대한 인식처리 시간복잡도가 우수하다. 문맥-자유 문법의 비단말 심볼의 개수 p, 단말 심볼의 개수 q, 그리고 길이가 k인 문자열이 입력이 될 때, BTRNN의 최대 상태수가 m이라고 하면, BTRNN의 인식처리 병렬처리 시간은 O(k)이고 순차처리 시간은 O(km)이다.

재귀적 분할 평균에 기반한 점진적 규칙 추출 알고리즘 (An Incremental Rule Extraction Algorithm Based on Recursive Partition Averaging)

  • 한진철;김상귀;윤충화
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권1호
    • /
    • pp.11-17
    • /
    • 2007
  • 패턴 분류에 많이 사용되는 기법 중의 하나인 메모리 기반 추론 알고리즘은 단순히 메모리에 저장된 학습패턴 또는 초월평면과 테스트 패턴간의 거리를 계산하여 가장 가까운 학습패턴의 클래스로 분류하기 때문에 테스트 패턴을 분류하는 기준을 설명할 수 없다는 문제점을 가지고 있다. 이 문제를 해결하기 위하여, 메모리 기반 학습 기법인 RPA를 기반으로 학습패턴들에 내재된 규칙성을 표현하는 IF-THEN 형태의 규칙을 생성하는 점진적 학습 알고리즘을 제안하였다. 하지만, RPA에 의해 생성된 규칙은 주어진 학습패턴 집합에만 충실히 학습되어 overfitting 현상을 보이게 되며, 또한 패턴 공간의 과도한 분할로 인하여 필요 이상으로 많은 개수의 규칙이 생성된다. 따라서, 본 논문에서는 생성된 규칙으로부터 불필요한 조건을 제거함으로써 ovefitting 현상을 해결함과 동시에 생성되는 규칙의 개수를 줄일 수 있는 점진적 규칙 추출 알고리즘을 제안하였으며, UCI Machine Learning Repository의 벤치마크 데이터를 이용하여 제안한 알고리즘의 성능을 입증하였다.

잔여 밀집 및 채널 집중 기법을 갖는 재귀적 경량 네트워크 기반의 단일 이미지 초해상도 기법 (Single Image Super Resolution Based on Residual Dense Channel Attention Block-RecursiveSRNet)

  • 우희조;심지우;김응태
    • 방송공학회논문지
    • /
    • 제26권4호
    • /
    • pp.429-440
    • /
    • 2021
  • 최근 심층 합성 곱 신경망 학습의 발전에 따라 단일 이미지 초해상도에 적용되는 심층 학습 기법들은 좋은 성과를 보여주고 있다. 현존하는 딥러닝 기반 초해상도 기법들 중 하나로 잔여 밀집 블록을 이용하여 초기의 특징 정보를 마지막 계층에 전달하여 이후의 계층들이 이전의 계층들의 입력정보를 사용하여 복원하는 RDN(Residual Dense Network)이 있다. 하지만 계층적인 모든 특징을 연결하여 학습하고 다수의 잔여 밀집 블록을 쌓게 되면 좋은 성능에도 불구하고 많은 파라미터의 수와 연산량을 가지게 되어 느린 처리 속도와 네트워크를 학습하는데 많은 시간이 소요되고 모바일 시스템에 적용이 어렵다는 단점을 가지고 있다. 본 논문에서는 이전의 정보를 다시 사용하는 연속 메모리 구조인 잔여 밀집 구조와 이미지의 특징맵에 따라 중요도를 결정해주는 채널 집중 기법을 이용한 잔여밀집 채널 집중 블록을 재귀적인 방식으로 사용하여 추가적인 파라미터 없이 네트워크의 깊이를 늘려 큰 수용 영역을 얻으며 동시에 간결한 모델을 유지할 수 있는 방식을 제안한다. 실험 결과 제안하는 네트워크는 RDN과 비교 하였을 때 4배 확대 배율에서 평균적으로 PSNR 0.205dB만큼 낮지만 약 1.8배 더 빠른 처리속도, 약 10배 더 적은 파라미터의 수와 약 1.74배 더 적은 연산량을 갖는 것을 실험을 통해 확인하였다.