• Title/Summary/Keyword: 장축 실린더

Search Result 8, Processing Time 0.022 seconds

Effect of the Cylindrical Fly-eye Lens's Precision on Long-axis Uniformity and Steepness of a Line Beam (실린더 잠자리 눈 렌즈의 정밀도가 선형 빔의 장축 균일도 및 경사도에 미치는 영향)

  • Lee, Seungmin;Song, Hyunsu;Woo, Hee;Kim, Daeyong;Jung, Jinho
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.6
    • /
    • pp.296-305
    • /
    • 2021
  • This paper reports a study on the long axis performance of the line beam optics used in laser lift-off equipment for the OLED manufacturing process. The centration errors of the cylindrical lens are classified and defined in seven categories, and the measurement methods are presented. The cylindrical fly-eye lens is analyzed theoretically and experimentally to find the influence of the surface shape error and decentering error on the long axis performance of the line beam optics system. A future research direction is also presented to improve the long axis performance.

Behavior and Optimization of Cylinder Applied by Composite Tape Wrapping Method (복합재/AISI4340 이중구조 후육실린더의 구조적 거동 및 최적화)

  • Lee, Kyeong-Kyoo;Kim, Wie-Dae
    • Composites Research
    • /
    • v.24 no.2
    • /
    • pp.22-29
    • /
    • 2011
  • To increase the performance of thick-walled cylinders recently their length is continually enlarged. For that reason it is important to reduce weight of the thick-walled cylinders. In this paper the FE models to predict and estimate effects on the composite tapes were created with MSC.Nastran/Patran v.2005. First of all a autofrettage method was applied to the 2D model of the AISI4340 cylinder reduced the thick. And then the comparison of the numerical results with analysis results showed and verified by using T300/5208, IM7/PETI5, IM7/8552 tapes. Those are predicted to the effects of the angle of the composite tapes and elastic modulus according to the composite properties.

Derivation of Empirical Erosion Equation of the 40 mm Long Hollow Cylinder (40 mm 장축공동실린더의 마모경험식 유도)

  • Chung, Dong-Yoon;Oh, Myoung-Ho;Shin, Nae-Ho
    • Tribology and Lubricants
    • /
    • v.25 no.3
    • /
    • pp.171-175
    • /
    • 2009
  • One of the critical issues associated with the 40mm long hollow cylinder's development and maintenance is the prediction of cylinder erosion. The actual firing test is the most accurate method to measure the cylinder erosion rate. But it costs a great deal and requires a long measurement time. Hence many empirical methods have been proposed to predict the erosion rate and life span of long hollow cylinders. An EFC formula is calculated. An approximate erosion formula for the ammunition type A is derived to interpolate 16 observation values up to 4,000 rounds. A new erosion equation and muzzle velocity formula are also suggested. Several numerical results are presented.

An Analytical and Experimental Study on the Thermal Shroud Effect to Minimize Thermal Deformation of a High L/D Ratio Cylinder (장축 실린더의 열변형 최소화를 위한 차열관 효과 해석 및 실험 연구)

  • Ahn, Sang-Tae
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.5
    • /
    • pp.54-63
    • /
    • 2007
  • A barrel is a high length-to-diameter ratio cylinder that is influenced by environmental factors such as sunlight, precipitation, wind and clouds. Cross-barrel temperature differences caused by uneven heating or cooling lead to thermal deformation that degrades accuracy. Therefore, a barrel is covered by thermal shrouds to minimize the type of thermal deformation, "fall-of-shot". In this paper, an analytical and experimental study is presented to design the thermal shrouds for a gun barrel and to evaluate the thermal shroud effect. First, an analytical study on the thermal shroud effect to minimize thermal deformation of a gun barrel by sunlight and wind is performed. The coupled analysis of thermal fluid dynamics of the air flow between a barrel and thermal shrouds and thermal stresses of a barrel Is performed to clarify both the thermal shroud effect and the drift in gun muzzle orientation by thermal deformation. Second, experiments are carried out to test and evaluate the thermal shroud effect on the performance of a gun barrel. The drift in gun muzzle orientation against the solar radiation is confirmed by the experiments, and the results well agree with the analytical estimation. Third, three principal design factors that are presumed to have an effect on the performance of the thermal shrouds are also analyzed; sorts of shroud materials, wall-thickness of thermal shrouds, and distance of the gap between a barrel and thermal shrouds.

Investigation of the changes in texture of soybean sprout depending on the heating conditions in sous-vide and conventional hot water cooking (Sous-vide가열과 열탕가열 조건에 따른 콩나물 머리와 줄기의 조직감 변화에 관한 연구)

  • Lee, Yun Ju;Jung, Hwabin;Yoon, Won Byong
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.3
    • /
    • pp.219-226
    • /
    • 2018
  • The purpose of this study was to investigate the effect of thermal treatments, such as a sous-vide and a conventional hot water cooking, on the texture changes of soybean sprout. A novel method to measure texture properties of soybean sprout have been determined because of the irregular geometry of soybean sprout. The shape of cotyledon of bean spout was accurately analyzed using an image processing and a geometry model. To minimize the effect of the contact area on the texture measurement, a blade type of probe was selected for the measurement. True stress was evaluated to reflect the shape changes during deformation, and demonstrated that the measurement accurately distinguished the effect of thermal treatment on the texture. Different heating time (i.e., 0, 10, 20, and 30 min) was applied for both sous-vide and conventional cooking. Thermal processing caused hardening of textures for both cotyledon and hypocotyl of soybean sprout. The conventional cooking method showed higher stress values than those of sous-vide cooking. Sprouts cooked by sous-vide released the moisture after thermal processing while sprout cooked by a conventional water bath method could hold the moisture content during thermal processing. The soybean sprouts treated by conventional cooking method showed a higher score in sensory evaluation.

Thermal Property Analysis of 40 mm Long Hollow Cylinders Though Measurements and Analysis of Transient Temperatures (온도 측정과 분석을 통한 40 mm 장축공동실린더의 열적특성 고찰)

  • Shin Nae-Ho;Chung Dong-Yoon;Oh Myoung-Ho;Yoo Sam-Hyeon;Nam Seok-Ryun
    • Tribology and Lubricants
    • /
    • v.22 no.4
    • /
    • pp.190-195
    • /
    • 2006
  • A simple and effective analysis method is presented for gaining a complete transient temperatures on the internal and external surfaces of a 40 mm gun tube subjected to a series of rapid firings. Two series of temperature data for both Hs and As were measured by using two rapid response k-type surface thermocouples near the firing origin and the muzzle. With other available temperature data, patterns of temperature variations of the gun tube as a function of time variable were driven through complete evaluations of the data. It is found that overall temperature gradients which increase exponentially toward saturation temperature, actually consist of a series of linear temperature gradients corresponding to the firing sequences. Under the similar firing sequences, patterns of temperature variations fur both the surface temperatures near the chamber and those near the muzzle were found to have linear temperature gradients with different values and the same response frequencies, i.e. they had peaks and lows in temperatures at the same time. The resultant complete temperature data can be used as the fundamental bases for analysis of thermoelastic properties of the materials such as thermal strain and stress, and f3r the prediction of cannon tube life-time through calculation of wear rate.

Stress dissipation characteristics of four implant thread designs evaluated by 3D finite element modeling (4종 임플란트 나사산 디자인의 응력분산 특성에 대한 3차원 유한요소해석 연구)

  • Nam, Ok-Hyun;Yu, Won-Jae;Kyung, Hee-Moon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.2
    • /
    • pp.120-127
    • /
    • 2015
  • Purpose: The aim was to investigate the effect of implant thread designs on the stress dissipation of the implant. Materials and methods: The threads evaluated in this study included the V-shaped, buttress, reverse buttress, and square-shaped threads, which were of the same size (depth). Building four different implant/bone complexes each consisting of an implant with one of the 4 different threads on its cylindrical body ($4.1mm{\times}10mm$), a force of 100 N was applied onto the top of implant abutment at $30^{\circ}$ with the implant axis. In order to simulate different osseointegration stages at the implant/bone interfaces, a nonlinear contact condition was used to simulate immature osseointegration and a bonding condition for mature osseointegration states. Results: Stress distribution pattern around the implant differed depending on the osseointegration states. Stress levels as well as the differences in the stress between the analysis models (with different threads) were higher in the case of the immature osseointegration state. Both the stress levels and the differences between analysis models became lower at the completely osseointegrated state. Stress dissipation characteristics of the V-shape thread was in the middle of the four threads in both the immature and mature states of osseointegration. These results indicated that implant thread design may have biomechanical impact on the implant bed bone until the osseointegration process has been finished. Conclusion: The stress dissipation characteristics of V-shape thread was in the middle of the four threads in both the immature and mature states of osseointegration.