• 제목/요약/키워드: 장면 인식

검색결과 161건 처리시간 0.025초

패치 기반 텍스쳐 합성을 활용한 실시간 마커 은닉 (Realtime Marker Concealment using Patch-based Texture Synthesis)

  • 윤경담;우운택
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 1부
    • /
    • pp.96-102
    • /
    • 2007
  • 본 논문에서는 자연스러운 증강현실 환경을 위하여 패치 기반의 텍스쳐 합성을 통한 마커 은닉 방법을 제안한다. 증강현실에서 카메라의 자세를 구하기 위한 보편적인 방법은 음영 대비가 뚜렷한 정사각형의 마커를 사용하는 것이다. 이러한 인위적인 마커의 사용은 물체의 인식과 추적을 용이하게 하지만 증강된 장면의 실감성을 감소시켜 사용성 저하를 유발하기도 한다. 제안된 마커 은닉 방법은 실시간성을 보장하면서, 배경 텍스쳐의 전역적인 특성을 유지하고, 주변 환경의 변화에 유연하다.

  • PDF

지능형 미디어 콘텐츠 편집 기술 개발 현황

  • 추연승;김현식
    • 방송과미디어
    • /
    • 제28권2호
    • /
    • pp.60-74
    • /
    • 2023
  • 미디어 콘텐츠 편집 기술은 콘텐츠 제작 과정에 필수적으로 요구되는 기술로, 비디오 특성 기반 장르 분류 기술, 자동 장면 분할 기술, 객체 인식 기술 등으로 구분될 수 있다. 코로나19 이후 미디어 콘텐츠 시장은 폭발적으로 성장하였으며, 인공지능을 활용하여 콘텐츠를 보다 쉽게 제작하려는 요구가 증가하면서 인공지능 기반의 미디어 콘텐츠 제작 및 편집 기술에 대한 연구 개발이 활발히 진행되고 있다. 본고에서는 미디어 콘텐츠 제작 과정에 적용 가능한 인공지능 기반의 미디어 편집 기술에 대한 개발현황에 대하여 살펴본다.

  • PDF

교통표지판 인식을 위한 비젼시스템 (An Vision System for Traffic sign Recognition)

  • 남기환;배철수
    • 한국정보통신학회논문지
    • /
    • 제8권2호
    • /
    • pp.471-476
    • /
    • 2004
  • 본 논문에서는 영상처리를 이용하여 온라인으로 교통표지판을 인식하는 비젼 시스템을 제안한다. 제안된 시스템은 넓은 두 개의 카메라, 즉 광각렌즈(wide-angle lends)와 망원렌즈(telephoto lends)를 장착하였고, 이미지처리 보드가 있는 PC로 구성되었다. 이 시스템은 색상, 자기, 형태 등과 같은 정보를 이용하여 광각이미지의 교통표지판을 추출한 다음, 보다 큰 이미지에서 정확한 표지판 후보영역을 추출하기 위해 망원렌즈에서 포착된 이미지를 이용하여 처리하였다. 실험결과로써 수동으로 촬영한 비디오 연속장면에서 포착한 영상을 시용하여 실험한 결과 속도표지판은 추출율 96.5%, 인식률 34.4% 그리고 안내표지판은 추출율 100%, 인식률 40%의 결과를 나타내었다. 또한 간단한 실행과정으로 빠른 인식률을 얻을 수 있었으며, 도로상에서의 실험으로 시스템의 효용성을 입증하였다.

움직임과 영상 패턴 서술자를 이용한 중복 동영상 검출 (Detecting near-duplication Video Using Motion and Image Pattern Descriptor)

  • 진주경;나상일;정동석
    • 대한전자공학회논문지SP
    • /
    • 제48권4호
    • /
    • pp.107-115
    • /
    • 2011
  • 본 논문은 대용량 동영상을 관리하기 위한 빠르고 효율적인 내용기반 중복 동영상 검출 알고리즘을 제안한다. 효율적인 중복 동영상 검출을 위해 대용량의 동영상을 처리하기 쉬운 작은 단위로 나누는 동영상 장면 전환 기반 분할 기술을 적용하였다. 동영상 서비스 및 저작권 보호 관련 사업모델의 경우, 필요한 기술은 아주 작은 구간의 동영상이나 한 장의 영상 을 검색하기보다는 상당한 길이 이상 일치하는 동영상을 파악하는 기술이 필요하다. 이러한 중복 동영상 검출을 위해 본 논문에서 동영상을 장면 전환을 기준으로 분할하여, 나누어진 장면 내에서 움직임 분포 서술자와 대표 프레임을 선택하여 프레임 서술자를 추출한다. 움직임 분포 서술자는 동영상 디코딩 과정에서 얻어지는 매크로 블록의 움직임 벡터를 이용한 장면 내 움직임 분포 히스토그램을 구성하였다. 움직임 분포 서술자는 정합시 고속 정합이 가능하도록 필터링 역할을 한다. 반면 움직임 정보만는 낮은 변별력을 가진다. 이를 높이기 위해 움직임 분포 서술자를 이용하여 정합된 장면간에 선택된 대표 프레임의 패턴 서술자를 이용하여 동영상의 중복 여부를 최종 판단한다. 제안된 방법은 실제 동영상 서비스 환경에서 우수한 인식률과 낮은 오인식률을 가질 뿐만아니라 실제 적용이 가능할 정도의 빠른 정합 속도를 얻을 수 있었다.

시공간 순차 정보를 이용한 내용기반 복사 동영상 검출 (Content based Video Copy Detection Using Spatio-Temporal Ordinal Measure)

  • 정재협;김태왕;양훈준;진주경;정동석
    • 대한전자공학회논문지SP
    • /
    • 제49권2호
    • /
    • pp.113-121
    • /
    • 2012
  • 본 논문은 대용량 동영상을 관리하기 위한 빠르고 효율적인 내용기반 중복 동영상 검출 알고리즘을 제안한다. 효율적인 중복 동영상 검출을 위해 대용량의 동영상을 처리하기 쉬운 작은 단위로 나누는 동영상 장면 전환 기반 분할 기술을 적용하였다. 동영상 서비스 및 저작권 보호 관련 사업모델의 경우, 필요한 기술은 아주 작은 구간의 동영상이나 한 장의 영상 을 검색하기보다는 상당한 길이 이상 일치하는 동영상을 파악하는 기술이 필요하다. 이러한 중복 동영상 검출을 위해 본 논문에서 동영상을 장면 전환을 기준으로 분할하여, 나누어진 장면 내에서 움직임 분포 서술자와 대표 프레임을 선택하여 프레임 서술자를 추출한다. 움직임 분포 서술자는 동영상 디코딩 과정에서 얻어지는 매크로 블록의 움직임 벡터를 이용한 장면 내 움직임 분포 히스토그램을 구성하였다. 움직임 분포 서술자는 정합시 고속 정합이 가능하도록 필터링 역할을 한다. 반면 움직임 정보만는 낮은 변별력을 가진다. 이를 높이기 위해 움직임 분포 서술자를 이용하여 정합된 장면 간에 선택된 대표 프레임의 패턴 서술자를 이용하여 동영상의 중복 여부를 최종 판단한다. 제안된 방법은 실제 동영상 서비스 환경에서 우수한 인식률과 낮은 오인식률을 가질 뿐만아니라 실제 적용이 가능할 정도의 빠른 정합 속도를 얻을 수 있었다.

감시 영상에서 움직임 정보 분석을 통한 폭력행위 검출 (Violent Behavior Detection using Motion Analysis in Surveillance Video)

  • 강주형;곽수영
    • 방송공학회논문지
    • /
    • 제20권3호
    • /
    • pp.430-439
    • /
    • 2015
  • 최근 범죄 예방을 위해 폭력행위 검출에 대한 영상 분석 기술에 대한 요구가 증가되고 있다. 영상을 이용한 행동 인식 기술을 많은 연구되고 있지만, 폭력행위에 대한 검출 기술은 상대적으로 텔레비전 또는 영화의 폭력장면 검출에만 초점이 맞추어져 있다. 영화에서 촬영 된 폭력 장면에는 주로 피를 흘리는 모습들이 자주 등장하기 때문에 움직임 정보와 색상 정보를 함께 사용하는 방법을 많이 사용하였다. 하지만 실제 CCTV에서 촬영된 폭력행위의 경우 피가 묻은 장면은 자주 발생하지 않기 때문에 색상 정보를 이용한 폭력행위 검출에는 한계점이 존재한다. 본 논문에서는 영상에서의 움직임 벡터를 이용하여 감시영상에서의 폭력 행동을 검출하는 알고리즘을 제안하고자 한다. 제안하는 방법은 공개 데이터인 USI 데이터와 실제 폭력 행위가 발생한 YouTube 데이터를 사용하여 검출결과를 나타내었다.

복합형 카메라 시스템을 이용한 자율주행 차량 플랫폼 (Autonomous Driving Platform using Hybrid Camera System)

  • 이은경
    • 한국전자통신학회논문지
    • /
    • 제18권6호
    • /
    • pp.1307-1312
    • /
    • 2023
  • 본 논문에서는 자율주행 인지 기술의 핵심 요소인 객체 인식과 거리 측정을 위해 서로 다른 초점거리를 가진 다시점 카메라와 라이다(LiDAR) 센서를 결합한 복합형 카메라 시스템을 제안한다. 제안한 복합형 카메라 시스템을 이용해 장면 안의 객체를 추출하고, 추출한 객체의 정확한 위치와 거리 정보를 생성한다. 빠른 계산 속도와 높은 정확도, 실시간 처리가 가능하다는 장점 때문에 자율주행 분야에서 많이 사용하고 있는 YOLO7 알고리즘을 이용해 장면 안의 객체를 추출한다. 그리고 객체의 위치와 거리 정보를 생성하기 위해 다시점 카메라를 이용해 깊이맵을 생성한다. 마지막으로 거리 정확도를 향상시키기 위해 라이다 센서에서 획득한 3차원 거리 정보와 생성한 깊이맵을 하나로 결합한다. 본 논문에서는 제안한 복합형 카메라 시스템을 기반으로 주행중인 주변 환경을 더욱 정확하게 인식함과 동시에 3차원 공간상의 정확한 위치와 거리 정보까지 생성할 수 있는 자율주행 차량 플랫폼을 제안하였으며, 이를 통해 자율주행 차량의 안전성과 효율성을 향상시킬 수 있을 것으로 기대한다.

경도정신지체학생 주변 집단의 인식변화를 위한 자기모델링비디오의 효과성 검증 (Self-Modeling Video Effect Verification for Change in Perception of Mildly Mentally Retarded Student Peripheral Groups)

  • 김성현;전병호
    • 한국콘텐츠학회논문지
    • /
    • 제7권9호
    • /
    • pp.10-17
    • /
    • 2007
  • 중학교 생활에서 경도정신지체학생의 따돌림 현상을 개선하기 위하여 동영상콘텐츠를 개발하고 적용한 결과 일반학생들의 경도정신지체학생에 대한 인식이 획기적으로 개선되었고 특히 동영상콘텐츠의 제작에 직접 출연한 경우가 그렇지 않은 경우보다 많은 인식변화가 있었으며 제작자의 의도가 심도 있게 실린 장면에 대한 연구대상자들의 인지도가 대단히 높게 나타난 것으로 조사되었다. 따라서 자기모델링비디오를 통한 학생 생활지도는 효과적이며 특히 제작자의 뚜렷한 교육적 목적을 가지고 만든 자기모델링비디오는 학생들의 행동과 인식변화에 효과적이다.

마커 없는 증강 현실 구현을 위한 물체인식 (Object Recogniton for Markerless Augmented Reality Embodiment)

  • 폴 안잔 쿠마;이형진;김영범;이슬람 모하마드 카이룰;백중환
    • 한국항행학회논문지
    • /
    • 제13권1호
    • /
    • pp.126-133
    • /
    • 2009
  • 본 논문에서는 마커 없이 증강 현실을 구현하기 위한 물체 인식 기법을 제안한다. 먼저 SIFT(Scale Invariant Feature Transform)알고리즘을 사용하여 물체 영상으로부터 특징점을 찾는데, 이러한 특징점들은 비율, 회전 또는 이동시에도 그 특징이 변하지 않는 장점이 있다. 또한 조도의 변화에도 일부는 변화지 않는 특성을 갖는다. 추출된 특징점의 독립적인 특성을 이용해 화면내의 다른 이미지의 매칭 포인트를 찾을 수 있는데, 학습된 영상과 매칭이 이루어지면, 매칭된 점을 이용해 화면내의 물체를 찾는다. 본 논문에서는 장면의 첫 프레임에서 발생하는 템플릿 이미지와의 매칭을 통해 현재의 화면에서 물체를 인식하였다. 네 종류의 물체에 대해 인식 실험을 한 결과 제안한 방법이 우수한 성능을 갖는 것을 확인하였다.

  • PDF

화자 인식을 통한 등장인물 기반의 비디오 요약 (Character-Based Video Summarization Using Speaker Identification)

  • 이순탁;김종성;강찬미;백중환
    • 융합신호처리학회논문지
    • /
    • 제6권4호
    • /
    • pp.163-168
    • /
    • 2005
  • 본 논문에서는 인물 기반의 비디오 요약 방법으로써 비디오 내 음성정보를 이용하여 화자 인식 기법을 통한 등장인물 중심의 요약 기법을 제안한다. 먼저, 얼굴 영역을 포함하는 장면을 중심으로 비디오로부터 배우의 대사에 해당하는 음성 정보를 분리하고, 화자 인식 기법을 수행하여 등장인물 별로 분류하였다. 화자인식 기법은 각 화자별로 MFCC(Mel Frequency Cepstrum Coefficient) 값을 추출하고 GMM(Gaussian Mixture Model)을 이용하여 분류한다. 본 논문에서는 4명의 등장인물에 대해 GMM을 학습시키고 4명 중 1명을 검출하는 실험을 통해 학습된 GMM 분류기가 실험 비디오에 대해 0.138 정도의 오분류율을 보임을 확인하였다.

  • PDF