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요  약

본 논문에서는 마커 없이 증강 현실을 구현하기 위한 물체 인식 기법을 제안한다. 먼저 SIFT(Scale 
Invariant Feature Transform)알고리즘을 사용하여 물체 영상으로부터 특징점을 찾는데, 이러한 특징점들은 비

율, 회전 또는 이동시에도 그 특징이 변하지 않는 장점이 있다. 또한 조도의 변화에도 일부는 변화지 않는 특

성을 갖는다. 추출된 특징점의 독립적인 특성을 이용해 화면내의 다른 이미지의 매칭 포인트를 찾을 수 있는

데, 학습된 영상과 매칭이 이루어지면, 매칭된 점을 이용해 화면내의 물체를 찾는다. 본 논문에서는 장면의 첫

프레임에서 발생하는 템플릿 이미지와의 매칭을 통해 현재의 화면에서 물체를 인식하였다. 네 종류의 물체에

대해 인식 실험을 한 결과 제안한 방법이 우수한 성능을 갖는 것을 확인하였다.
Abstract

In this paper, we propose an object recognition technique for implementing marker less augmented reality. 
Scale Invariant Feature Transform (SIFT) is used for finding the local features from object images. These 
features are invariant to scale, rotation, translation, and partially invariant to illumination changes. Extracted 
Features are distinct and have matched with different image features in the scene. If the trained image is 
properly matched, then it is expected to find object in scene. In this paper, an object is found from a scene 
by matching the template images that can be generated from the first frame of the scene. Experimental results 
of object recognition for 4 kinds of objects showed that the proposed technique has a good performance.
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I. Introduction

Augmented reality is becoming important in different 
industrial applications for developing, production and 
servicing. In Augmented Reality, the user can see the 
real world around him, with computer graphics 

superimposed or composited with the real world. The 
goal of augmented reality is to add information and 
meaning to a real object or place. Unlike virtual reality, 
augmented reality does not create a simulation of reality. 
Instead, it takes a real object or space as the foundation 
and incorporates technologies that add contextual data to 
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deepen a person’s understanding of the subject. Like by 
superimposing imaging data from an MRI onto a 
patient’s body, augmented reality can help a surgeon 
pinpoint a tumor that is to be removed. In this case, the 
technology used might include headgear worn by the 
surgeon combined with a computer interface that maps 
data to the person lying on the operating table. In other 
cases, augmented reality might add audio commentary, 
location data, historical context, or other forms of 
content that can make a user’s experience of a thing or 
a place more meaningful. In this way Augmented reality 
has been put to use in a number of fields, including 
medical imaging, where doctors can access data about 
patients aviation, where tools show pilots important data 
about the landscape they are viewing; training, in which 
technology provides students or technicians with 
necessary data about specific objects they are working 
with; and in museums, where artifacts can be tagged 
with information such as the artifact’s historical context 
or where it was discovered.

To track any object correctly, first task is to 
recognize the object perfectly. In the applications of 
augmented reality where virtual objects are generated by 
the computer on the real scene, the position and tracking 
the real scene has its great significance. In traditional 
Augmented Reality applications marker based approach 
are very popular. The marker is attached to different 
objects and by detecting the marker, computer finds out 
position of the object and generates the virtual object on 
it. This approach is suitable for indoor augmented reality 
and simple scenario. The main drawback of the marker 
based system is the size and appearance of the marker. 
Most of the cases the markers need to have certain 
dimensions and appearance. Sometimes in the indoor 
environments where there are multiple objects are 
existed, markers may be detected wrong with other 
similar kind of objects. On the other side for outdoor 
augmented reality applications it is not convenient to 
hang markers to all objects like roads, buildings. So 
marker based system is not robust approach for outdoor 

environment. Robust Augmented Reality system must 
have the capability to recognize and match natural 
objects both in indoor and outdoor environment. Thus in 
the application for Augmented Reality for indoor and 
outdoor environment the important task is to recognize 
natural objects from the scene.  Computer vision 
algorithms can be applied for recognizing natural 
objects. Suppose in the application of automatic 
navigation where we need to display the address or 
name of any building. To implement this kind of system, 
first we must need to create a database of the object 
image, extract the distinct features of these objects and 
match those features in real scene. This can be 
implemented for the indoor environment also. Many 
Researchers worked with natural object recognition 
without markers. The 2D feature extraction and matched 
with the priori known 3D models proposed by D.Beier 
[3] for markerless Augmented Reality Applications 
.Quan Wang et el. [4] used Multiple View Kernel 
Projection that combines a multiple view training stage 
and  kernel projection for feature description for 
Augmented Exhibitions .Schiele  et el.[5] used 
multidimensional receptive field histograms for object 
recognitions . David Marimon [6] used orientation 
histogram based matching for region finding. There are 
also several other object matching algorithms based on 
area, histogram and so on. Aibing Rao [7] used spatial 
color histograms; Cordelia Schmid Et el. [8] worked 
with Harris corner detector. They used rotational 
invariants features at corner points. These approach 
works well for rotation invariant but not worked well for 
scale invariant. It is also sensitive to viewpoint and 
illumination changes. These algorithms are limited in 
many aspects, in the context of scaling, rotation, 
distortion, background, illumination, etc. Many 
researchers worked with feature extraction. We used 
SIFT algorithm proposed by David Lowe [1]for 
extracting the features from images of objects. We first 
make some template images from different objects and 
find out the keypoints of those template images. We 
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tried to match based on still images but varying the 
scale, and alignment. Then we tried to match the 
template with the scene capture by the webcam.  We get 
very impressive result, and in the case of scene 
matching we found the exact object from multiple 
objects those do not coincide with the other objects 
those presented in the scene.

II. Scale Invariant Feature Transform

Image matching is fundamental in computer vision 
for object recognition. For recognition of any object the 
matching must be done based on some features that can 
be extracted from the images. These image features may 
have many properties. For getting robust recognition 
performance these features must be invariant to image 
scaling and rotation and partially invariant to 
illumination changes.

The scale invariant feature transform (SIFT) (Lowe, 
1999-2004) aims to resolve the practical problems in 
low level feature extraction and their use in matching 
images. SIFT involves two stages, feature extraction and 
description. The description stage concerns  use of the 
low level features in object matching .Low-level feature 
extraction within the SIFT approach selects salient 
features in a manner invariant to image scale (feature 
size) and rotation and partial invariance to change in 
illumination. The Algorithm has four stages.

1. Scale-Space Extrema Detection 
2. Keypoints Localization 
3. Orientation assignment 
4. Keypoint descriptor

2-1 Scale Space Extrema Detection

In this first stage the interest points, keypoints are 
detected within the SIFT framework. The image is 

convolved with Gaussian filters at different scales. The 
difference of successive Gaussian-blurred images is 
computed. Keypoints are then computed as 
maxima/minima of the Difference of Gaussians (DoG) 
that occur at multiple scales. A Difference of Gaussian 
image  is defined as the follow.

      (1)

Here  is the convolved output of 
original image  with the Gaussian blur 
at scale kσ, i.e

          (2)

So, A DoG image between scales kiσ and kjσ is just 
the output from difference of the Gaussian-blurred 
images at scales kiσ and kjσ. To detect scale-space 
extrema in the SIFT algorithm, the image is first 
convolved with Gaussian-blurs at different scales. The 
convolved images are grouped by an octave. An octave 
corresponds to doubling the value of σ. The value of ki 
is selected so that a fixed number of convolved images 
per octave can be obtained. Then the 
Difference-of-Gaussian images are taken from adjacent 
Gaussian-blurred images per octave.

Once DoG images have been obtained, keypoints are 
identified as local minima/maxima of the DoG images 
across scales. This is done by comparing each pixel in 
the DoG images to its eight neighbors at the same scale 
and nine corresponding neighboring pixels in each of the 
neighboring scales. If the pixel value is the maximum or 
minimum among all compared pixels, it is selected as a 
candidate keypoints.
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Fig1. 키포인트를 찾는 쉬프트 검출기를 이용한 디오지 

영상 피라미드

Fig 1. The DoG image pyramid used by the SIFT 

detector to locate keypoints.

그림 2. 

키포인트의 최대값과 최소값은 26개의 이웃 픽셀값으로 

설정

Fig. 2. A keypoint must be a local minimum or 

maximum of its 26 neighbors.

2-2 Key Point Localization

Scale-space extrema detection produces too many 
keypoint candidates, some of those are unstable. It needs 
to perform a detailed fit to the nearby data for accurate 
location, scale, and ratio of principal curvatures. 
Keypoint localization gives the information of those 
points to be rejected having low contrast, sensitive to 
noise and poorly localized along an edge.

For each candidate keypoint, interpolation of nearby 
data is used to accurately determine its position. The 
interpolated location of the maximum is calculated, 
which substantially improves matching and stability. The 
interpolation is done using the quadratic Taylor 
expansion of the Difference-of-Gaussian scale-space 
function, D(x,y,σ) with the candidate keypoint as the 

origin. This Taylor expansion is given by

 
 

 


 

 

 
         (3)


 

 


                          (4)

where D and its derivatives are evaluated at the 
candidate keypoint and    the offset from 

this point. The location of the extremum   is 
determined by taking the derivative of this function with 
respect to   and setting it to zero. If the offset   is 
larger than 0.5 in any dimension, then that's an 
indication that the extremum lies closer to another 
candidate keypoint In this case, the candidate keypoint 
is changed and the interpolation performed instead about 
that point. Otherwise the offset is added to its candidate 
keypoint to get the interpolated estimate for the location 
of the extremum. To discard the keypoints with low 
contrast, the value of the second-order Taylor expansion 
is computed at the offset . If this value is less than 
0.03, the candidate keypoint is discarded. Otherwise it is 

kept, with final location   and scale σ, where   is 
the original location of the keypoint at scale σ.

2-3 Eliminating edge responses

The DoG function has strong responses along edges, 
even if the candidate keypoint is unstable to small 
amounts of noise. Therefore, in order to increase 
stability, it needs to eliminate the keypoints that have 
poorly determined locations but have high edge 
responses. For poorly defined peaks in the DoG 
function, the principal curvature across the edge would 
be much larger than the principal curvature along it. To 
find out principal curvatures amounts we need to solve 
for the eigenvalues of the second-order Hessian Matrix 
H.
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 



 

 




            (5)

The eigenvalues of H are proportional to the principal 
curvatures of D. The ratio of the two eigenvalues, 
    where   is the larger one and   the smaller 
one, is sufficient for SIFT's purposes. From the Hessian 
matrix H,    is the sum of the two 

eigenvalues and it is trace of H;  
   is 

the Determinant. The ratio   

can be shown to be equal to,   which 
depends only on the ratio of the eigenvalues rather than 
their individual values. The ratio R reached to minimum 
when both eigenvalues are equal. Therefore the higher 
the absolute difference between the two eigenvalues, 
which is equivalent to a higher absolute difference 
between the two principal curvatures of D, the higher 
the value of R. It follows that, for some threshold 
eigenvalue ratio  , if R for a candidate keypoint is 

larger than    that keypoint is poorly 

localized and hence rejected. 
2.3.1 Orientation Assignment
Each keypoint is assigned one or more orientations 

based on their local image gradient directions. This has 
done for achieving rotation invariant . The 
Gaussian-smoothed image at the keypoint's scale σ is 
taken so that all computations are performed in a 
scale-invariant manner. The gradient magnitude 
 and orientation   are pre computed 
using pixel differences for an image sample  at 
scale  . Let consider,     
and    , then magnitude 
and orientation can be represented by 

                 (6)

   arctan
              (7)

The magnitude and direction calculations for the 

gradient are done for every pixel in a neighboring region 
around the keypoints in the Gaussian-blurred image L. 
An orientation histogram is formed and the total number 
of bins is 36, every bin covering 10 degrees. Each 
samples in the neighboring window added to a 
histogram bin. Every sample is weighted by its gradient 
magnitude and by a Gaussian-weighted circular window 
with an σ that is 1.5 times that of the scale of the 
keypoint. The peaks in this histogram correspond to 
dominant orientations. The orientations corresponding to 
the highest peak and those local peaks within 80% of 
the highest peaks are assigned to the keypoint, once the 
histogram filled. For multiple orientations an additional 
keypoint is created having the same location and scale 
as the original keypoint for each additional orientation.

2-4 Keypoint descriptor

The computation of descriptor vectors for these 
keypoints is important because the descriptors are highly 
distinctive and partially invariant to the remaining 
variations, like illumination, 3D viewpoint, etc. This step 
is pretty similar to the Orientation Assignment step. The 
feature descriptor is computed as a set of orientation 
histogram (4 x 4) pixel neighborhoods. The orientation 
histograms are relative to the keypoint’s orientation. The 
orientation data comes from the Gaussian image closest 
in scale to the keypoint's scale. Each pixel is weighted 
by the gradient magnitude, and also by a Gaussian with 
σ 1.5 times the scale of the keypoint. Each Histogram 
contains 8 bins, and each descriptor contains a 4x4 array 
of 16 histograms around the keypoint. This leads to a 
SIFT feature vector with (4 x 4 x 8) =128 elements. 
This vector is normalized to enhance invariance to 
changes in illumination.
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그림 3. 이미지 증감도와 키포인트 기술어

Fig. 3. Image gradients and KeyPoint Descriptor. 

III. Matching of Keypoints

The dimension of the descriptor is 128 that are high. 
Descriptors with lower dimension than this don't 
perform as well across the range of matching task. The 
computational cost remains low due to the approximate 
Best Bin First (BBF)method used for finding the 
nearest-neighbor. Best Bin First is an approximate 
algorithm which returns the nearest-neighbor for a large 
fraction of queries and a very close neighbor. To test the 
distinctiveness of the SIFT descriptors, matching 
accuracy is also measured against varying number of 
keypoints in the testing database, and it is shown that 
matching accuracy decreases only very slightly for very 
large database sizes.

IV. Experimental Results 

We have implemented using VC++ and OpenCV and 
tested our system on Intel core (TM2) CPU 6320 of 
1.86GHZ with 2GB memory. We used the template 
image of object from the first frame of the scene. The 
Figure 4 shows the outputs of the SIFT keypoint 
detector on two images of CAN from two different 
viewpoints. Altogether, 497 and 297 keypoints were 
detected Two keypoints were considered to be a match 
if their distance in the 128-dimensional space is less 
than a given threshold value.  We use the threshold 
value 0.49. The pairwise distances of the keypoints 

descriptors (128-vectors) from the two set of keypoints 
were computed. Then we take image of different 
oriented view of the same CAN. Then found out the 
keypoints and then we match between the two views. 
The 51 matching keypoints found are shown in Figure 
5. Due to the similarities in appearances of portions of 
the image some incorrect matches are evident. 
Otherwise, the majorities of the matches are correct, 
revealing the rotation and translation of the camera 
between the two views. In Figure 6 Gaussian Blurred 
images produced by varying the   value has shown. 

We gave some single object testing results of CAN 
and other objects in Figure 7 and Figure 8 using web 
camera. We test the recognition system from some 
complex scene. There are multiple objects are presented. 
We found the exact object from the scene that we   want 
to match. The system recognizes that object and results 
shown in Figure 9.

그림 4. 서로 다른 2개 시점 영상의 키포인트

Fig. 4. Showing the keypoints of two Different view 

image.

그림 5. 템플릿 이미지를 갖는 두 시점의 매칭

Fig. 5. Matching between two views with the

 template image.
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그림 6. 시그마 값의 변화에 따른 가우시안 블러드 

이미지 

Fig. 6. Gaussian Blurred images produced by varying 

the   value. 

그림 7. 다른 위치 물체의 매칭

Fig. 7. Single object matching of different 

orientation. 

그림 8. 2가지 예의 물체 매칭

Fig. 8. Two sample object matching. 

그림 9. 씨디, 책, 캔, 포도음료수 캔 등 서로 다른 

물체의 인식

Fig. 9. Different object finding out from the scene. 

CD, Book, CAN, Grape CAN.

V. Conclusion

This paper presents a method that recognizes different 
objects from indoor scene. Traditional marker based 
system can be replaced by this procedure. We can use 
this for indoor Augmented Reality Applications like 
recognition of different books and display their contents, 
or different objects in the museum. Due to distinctness 
of recognition capability and freeness from scale change, 
orientation change this method, will be very good for 
outside Augmented Reality applications like Road, 
Building recognitions etc. In future we want to use this 
method for outside applications and try to combine with 
GIS and GPS data.
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