• Title/Summary/Keyword: 장마기간

Search Result 139, Processing Time 0.016 seconds

가을장마와 태풍

  • 허창회
    • Proceedings of the KGS Conference
    • /
    • 2003.05a
    • /
    • pp.87-90
    • /
    • 2003
  • 한반도의 강수는 여름철 강수량이 연 강수량의 50% 이상이며, 여름 강수량의 상당 부분이 장마기간에 집중되어 내리는 특성을 갖고 있다 (Ho and Kang, 1988). 장마기간의 강수는 산악 등 지형의 영향을 받아서 어느 지역에 집중되어 내리며, 그 지역에 커다란 인명 및 재산상의 피해를 끼친다. 이러한 집중호우로 의한 피해는 국가의 경제와 산업이 발달할수록 증가하고 있다. 그러나 아직까지도 장마기간동안 시간과 공간적으로 다양하게 변화하는 강수발생의 이해와, 나아가 집중호우의 예측에 대한 연구는 어려운 과제로 남아 있다. (중략)

  • PDF

A Study on the Correlation between Persistence of Rainfall and Frequency of Landslide Occurrence (강우 지속성과 산사태 발생 빈도의 연관성에 관한 연구)

  • Jeong, Youjin;Choi, Junghae
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.631-646
    • /
    • 2021
  • Increasing incidences of landslides in Korea are endangering life and damaging property. To ascertain the cause of the rapid increase in landslides in 2020, this study analyzed the correlation between frequency of their occurrence and persistence of rainfall. The study area comprised seven areas in Gangwon-do, Gyeonggi-do, Gyeongsangnam-do, Gyeongsangbuk-do, Jeollanam-do, Jeollabuk-do, and Chungcheongnam-do. The used rainfall factors were monthly rainfall in June, July, and August, rainfall during the summer (June-August), rainfall during the monsoon season, and number of precipitation days during the summer and during the monsoon season. The effect of these factors on landslides was identified by comparing them with the occurrence of landslides in the year of increased landslide occurrence in each area. The results confirmed that not only rainfall but also the number of precipitation days during the monsoon season affect the occurrence of landslides. The rapid increase in landslide occurrence in 2020 was attributed to increases in both the number of precipitation days during the monsoon season and rainfall during the monsoon season in 2020. These results are expected to be used as basic data for future landslide warning standards that consider the effect of the persistence of rainfall.

Recent Changes in Summer Precipitation Characteristics over South Korea (최근 한반도 여름철 강수특성의 변화)

  • Park, Chang-Yong;Moon, Ja-Yeon;Cha, Eun-Jeong;Yun, Won-Tae;Choi, Young-Eun
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.3
    • /
    • pp.324-336
    • /
    • 2008
  • This paper examines the recent changes of summer precipitation in the aspect of temporal and spatial features using long-term($1958{\sim}2007$) observed station data over South Korea. tong-term mean summer precipitation has revealed two precipitation peaks during summer(June to September); one is the Changma as the first peak, and the other is the post-Changma as the second peak. During the Changma period, the spatial distribution of the maximum precipitation areas is determined by the prevailing southwesterlies and the quasi-stationary front, which results in large amount of precipitation at the windward side of mountain regions over South Korea. However during the post-Changma period, the spatial distribution of the maximum precipitation areas is determined by the lower tropospheric circulation flows from the west and the southeast around the Korean peninsula, and the weather phenomena such as Typhoons, convective instability, and cyclones which are originated from the Yangtze river. The larger amount of precipitation is founded on the southern coastal region and mountain and coastal areas in Korea during the second peak. Time series of total summer precipitation shows a steady increase and the increasing trend is more obvious during the recent 10 years. Decadal variation in summer precipitation indicates a large increase of precipitation, especially in the recent 10 years both in the Changma and the post-Changma period. However, the magnitude of change and the period of the maximum peak presents remarkable contrasts among stations. The most distinct decadal change occurs at Seoul, Busan, and Gangnueng. The precipitation amount is increasing significantly during the post-Changma period at Gangnueng, while the precipitation increases in the period between two maximum precipitation peaks during summer at Seoul and Busan.

희망칼럼 - 국제 기후 변화 대책은 새로운 성장의 기회

  • Lee, Sang-Mok
    • 핵융합뉴스레터
    • /
    • s.42
    • /
    • pp.4-5
    • /
    • 2009
  • 매년 여름을 앞두고 농어민들은 물론 여름휴가를 준비하는 도시민들의 최대 관심사였던 장마예보가 48년 만에 역사 속으로 사라진다는 뉴스가 있었다. 장마전선의 영향을 받는 기간 동안 집중 호우가 있었던 예전과 달리 장마전선 형성전이나 소멸 후에도 강한 비가 수시로 내리는 등 우리나라의 여름철 강수 특성이 많이 변해 장마를 예측한다는 것이 의미가 없다는 이유이다. 장마예보가 반가운 뉴스는 아니었지만 기후변화로 인한 현상이라 생각하니 씁쓸해진다.

  • PDF

Evaluation of autocorrelation characteristics of arctic oscillation and its cross-correlation to the monsoon and typhoon (북극진동의 자기상관 특성 및 우리나라 장마 및 태풍과의 교차상관 특성 평가)

  • Lee, Hyunwook;Song, Sunguk;Yoo, Chulsang
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.12
    • /
    • pp.1247-1260
    • /
    • 2018
  • This study investigated the effect of arctic oscillation by analyzing the cross-correlation characteristics between the arctic oscillation index (AOI) and the number of typhoons occurred in the North Pacific, the number of typhoons affecting South Korea, total rainfall amount and number of rainy days during the monsoon season in South Korea. For this analysis, the monthly AOI data were transformed into the average data about January and seasonal AOI data representing winter, spring, fall and winter. The typhoon data and monsoon data were all those collected annually. The data period for this analysis was determined to be from 1961 to 2016 by considering the data available. Based on this analysis, it was found that the arctic oscillation has a weak but statistically significant effect on the monsoon characteristics of South Korea. However, the level of effect was not consistent over the data period but varied significantly periodically. For example, the cross-correlation coefficient derived for the recent 10 years was estimated to be higher than 0.8, but was simply insignificant during the 30 years before the last decade. The overall effect of arctic oscillation on the occurrence of typhoon was found to be statistically insignificant, but was also fluctuating periodically to show somewhat significant effect. Finally, it should be mentioned that the effect of arctic oscillation on the typhoon and monsoon had been changing by turns from 1960s to 2000s. However, in the 2010s, it happened that the effect of arctic oscillation has become significant on both typhoon and monsoon in South Korea.

Climatological Features of Summer Precipitation in Korea (우리나라 여름철 강수량의 기후적 분포 특성)

  • Jo, Ha-Man;Choe, Yeong-Jin;Gwon, Hyo-Jeong
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.3
    • /
    • pp.247-256
    • /
    • 1997
  • Some climatological features of summer precipitation in Korea were studyed using the precipitation data of 15 stations of Korea Meteorological Administration where more than 30 years data since 1961 are available. The study included statistical analysis of precipitation by climatological normal values, and comparison of inter-annual variation of annual precipitation, summer precipitation and precipitation during the Changma. The relationships between them were also analyzed. It was revealed that, in Korea, more than half of annual precipitation was concentrated in summer season (June to August), and it was usually influenced by the Changma. The ratio of summer and Changma precipitation to the annual precipitation showed that effect of Changma was bigger in the central inland area, while comparatively smaller in the east coastal area and Cheju Island due to topographical effects. It was also shown that the fluctuation of the annual precipitation was less variable than those of summer and Changma precipitations. Thus, it was suggested that understanding the variation features of summer precipitation associated with monsoon activities was very important to figure out the change of annual precipitation for the national water resources planning.

  • PDF

우리나라의 여름철 강수량 변동

  • 고정웅;이승호
    • Proceedings of the KGS Conference
    • /
    • 2003.11a
    • /
    • pp.43-48
    • /
    • 2003
  • 우리나라는 강수량의 계절별 편차가 크고, 지역에 따라 차이가 심하기 때문에 홍수나 가뭄 등의 기상재해가 빈번하다. 여름철에는 연간 수량의 60%이상이 집중되므로 이 기간의 강수량에 대한 효과적인 수자원 활용은 중요한 문제이다. 일반적으로 우리나라의 여름철은 초여름, 장마, 한여름, 늦장마로 세분되며, 강수량은 주로 장마와 늦장마기에 내린다(이승호, 1994). (중략)

  • PDF

The Impact of monsoon Rainfall (Changma) on the Changes of Water Quality in the Lower Nakdong River (Mulgeum) (장마기의 강우가 낙동강 하류 (물금) 수질에 미치는 영향)

  • Park, Sung-Bae;Lee, Sang-Kyun;Chang, Kwang-Hyeon;Jeong, Kwang-Suek;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.3 s.99
    • /
    • pp.160-171
    • /
    • 2002
  • The impact of summer monsoon on water quality of the lower Nakdong River was evaluated during the summer (June-August) in 1997. Several limnological variables were measured in the interval of $1{\sim}3$ day using an automatic monitoring system (Hydrolab $Recorder^{TM}$) to detect water quality changes caused by rainfall on onehour basis. During the monsoon period (from late June to mid July), 5 times of major rainfall events of >50 mm were recorded in the river basin. Dynamic changes of water quality were observed during the monsoon, and the first rainfall event (June$25{\sim}27$) had a significant influence on the water quality at the lower part of the river. All Parameters were largely changed due to the first rain event, and the changed level was maintained until the end of monsoon period. Nutrient concentrations and turbidity increased and values of the other parameters were declined as a result of water dilution. This rainfall event, Changma, is a meteorological phenomenon caused by the East-Asian monsoon climate. The magnitude and frequency of the rainfall during the early monsoon play an important role in change of water quality and ecosystem characteristics of large river systems.

Effects of Sowing Method and Summer Management on Stubbli Carbohydrate Reserves and Microclimate of Orchargrass Meadow (파종방법 및 여름철 관리가 Orchargrass채초지의 그루터기 저장탄수화물 함량 및 미기상에 미치는 영향)

  • 권찬호;김동암
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.12 no.2
    • /
    • pp.77-84
    • /
    • 1992
  • This experiment was designed to gain information on factors affecting stubble death of orchardgrass (Dactylis glomerata L.) during the first rainy season. According to the experimental plan, the effects of sowing methods, drainages and cutting dates on the stubble carbohydrate content of orchardgrass, available soil moisture content of experimental plots, temperatures at the ground level and in the soil, and relative light intensity and humidity at the base of orchardgrass canopy were measured during the rainy season. The carbohydrate content of orchardgrass was sharply decreased to 2.9 % at 3rd day after cutting in the plots cut before rainy season and a gradural recovery was noted following the sharp reduction, but in the plots cut after rainy season, orchardgrass showed 5.5% of carbohydrate content before cutting and 3.0% at the 3rd day after cutting. The same pattern in both carbohydrate reduction and recovery was found between two cutting treatments. The available soil moisture content in the plots cut before rainy season was slightly higher than that in the plots cut after rainy season. But after the rainy season, the available soil moisture content in the plots cut after rainy season was higher than that in the plots cut before rainy season. Soil temperature at lOcm depths in the plots cut before rainy season was higher than that in the plots cut after rainy season. Daily maximum air temperature at the ground level in the plots cut before rainy season was higher than that in the plots cut after rainy season and changeable. Relative humidity at the ground level was below 70% in the plots cut before rainy season, but 75 to 90 % was observed in the plots cut after rainy season. Relative light intensity at the ground level in the plots cut before rainy season was much higher, recorded 50 to 90 %, than that in the plots cut after rainy season showing less than 10%. The results of this study suggest that the stubble death of orchardgrass during the rainy season is due to plant diseases influenced by a decrease of light penetration and increase of relative humidity at the base of the grass canopy.

  • PDF

The Impact of Monsoon on Seasonal Variability of Basin Morphology and Hydrology (호수 지형 및 수리수문학적 변화에 대한 몬순 영향)

  • An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.4 s.92
    • /
    • pp.342-349
    • /
    • 2000
  • This paper demonstrates the influence of intensity of the monsoon on morpho-hydrological fluctuations in Taechung Reservoir during 1993${\sim}$1994. During the study, hydrological variables including rainfall, inflow, and discharge volume showed distinct contrast between 1993 and 1994. Interannaul differences in rainfall occurred during the monsoon in July${\sim}$August monsoon and influenced inflow, discharge, and water residence time (WRT). Total inflow in 1993 was four times greater than that of 1994, and summer inflow in 1993 was 8 times greater than summer 1994. Annual Mean WRT was 93.2 d in 1993 vs. 158.6 d in 1994 and the largest differences occurred between monsoons of 1993 and 1994. Morphometric variables reflected the interannual contrasts of hydrology, so that in 1993 surface area, total volume, shoreline development, and mean depth increased consistently from premonsoon to postmonsoon and over this same period in 1994 they decreased. This outcome indicates that the area of shallow littoral zones in 1993 was greater than in 1994. Also, the drainage area to surface area (D/L) at 80 m MSL was 60.7 which was much greater than values in Soyang and Andong reservoirs and natural lakes world-wide. The morpho-hydrodynamic conditions seemed to influence in-reservoir nutrient concentration which is one of the most important factors regulating the eutrophication processes. I believe, under the maximum hydrodynamic fluctuations in Korean waterbodies during the monsoon, applications of mass balance models to man-made lakes for assessments of external loading should be considered because the models can be used under the seasonally stable inflow and water residence time.

  • PDF