• Title/Summary/Keyword: 장력추정

Search Result 120, Processing Time 0.028 seconds

Estimating Tensile Force of Hangers in Suspension Bridges Using Frequency Based SI Technique : III. Experimental Verification (진동기반의 SI 기법을 이용한 현수교 행어의 장력 추정 : III. 실험적 검증)

  • Jang, Han Teak;Kim, Byeong Hwa;Park, Taehyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.215-222
    • /
    • 2008
  • This paper introduces an experimental verification of a tension estimation method based on system identification approach for a double hanger system on a suspension bridge. A laboratory model of such double hanger system has been made for this study. Total nine cases of the vibration tests have been conducted with respect to three levels of applied tension and three cases of the location of clamp. For a set of the collected acceleration response data, modal analysis has been followed in order to extract the natural frequencies and mode shapes of the selected cable systems. For the extracted modal parameters, the existing tension estimation methods based on the string theory and axially loaded beam theory have been firstly applied to estimate the tensile force on the double hanger cable system. Next, the tensile force on cables has been estimated by the system identification approach. It is seen that the errors in the tension estimation using the frequency-based system identification technique are about 3% for all cases while the estimation error using the existing method is up to 53.1%.

Development of Wireless Tension Force Estimation Systemfor Cables of Long-span Bridges (장대교량의 케이블을 위한 무선장력계측시스템 개발)

  • Cho, Soo-Jin;Yun, Chung-Bang;Lynch, Jerome P.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.14-17
    • /
    • 2009
  • 본 연구에서는 장대교량에서 케이블의 장력을 간편하게, 그리고 자동적으로 추정할 수 있는 저비용 무선장력계측시스템을 개발하였다. 개발된 시스템은 크게 비용이 저렴하고 설치 및 관리가 용이한 무선 기반 하드웨어와 케이블에서 계측된 가속도 데이터로부터 장력을 자동으로 추정하여 주는 내장 (Embedded) 자동화 소프트웨어로 구성된다. 저비용 무선 기반 하드웨어는 연산능력을 가진 무선계측유닛과, 계측 신호개선을 위한 신호처리보드, 그리고 상용 MEMS 가속도계로 구성되었으며, 내장 자동화 소프트웨어는 계측된 신호의 주파수 분석을 위한 FFT 모듈, 케이블의 푸리에 스펙트럼으로부터 고유진동수를 자동으로 추출하기 위한 자동 피크 추출(Peak-picking) 알고리즘 모듈, 그리고 추출된 고유진동수를 활용하여 케이블의 장력을 추정하는 진동법 모듈로 구성되었다. 개발된 시스템의 검증을 위하여, 사장교의 케이블 축소모델을 제작하고 케이블 모델에 다양한 장력과 새그를 주어 진동실험을 수행하였다. 실험 결과, 개발된 시스템은 케이블 모델의 주파수응답스펙트럼으로부터 고유진동수를 정확하게 추정하였으며, 장력과 새그의 크기에 상관없이 매우 정확한 장력을 추정하였다.

  • PDF

Comparative Study of Cable Tension Measurement Methods by In-situ Measurements on a Cable-stayed Bridge under Construction (시공 중 사장교 실측을 통한 케이블 장력 추정 기법 비교 연구)

  • Cho, Soo-Jin;Yim, Jin-Suk;Shin, Sung-Woo;Jung, Hyung-Jo;Yun, Chung-Bang;Wang, Ming.L.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.48-51
    • /
    • 2011
  • 사장교에서 케이블은 하중을 지지하는 주요 부재로, 케이블 장력은 사장교의 건전성과 안전도 평가에 있어서 매우 중요한 변수이다. 케이블 장력을 추정하기 위한 대표적인 방법으로는 로드셀을 이용한 직접법과 진동 계측 자료를 이용한 간접법 등이 있으며, 최근에는 자기장-응력 관계를 이용한 EM(Elasto-Magnetic) 센서 측정법이 개발되어 케이블 장력 추정에 적용되었다. 본 논문에서는 세 가지 장력 추정 기법을 실제 시공중인 사장교에 적용하여, 그 성능을 상호 비교하였다. 본 연구는 한국의 KAIST와 미국 Northeastern 대학교의 공동연구로 수행되었다. 대상 교량은 부산 화명동과 김해 초정리를 연결하기 위해 현재 건설중인 화명대교이다. 화명대교의 교량 형식은 2주탑 콘크리트 사장교 (주탑 경간장 270m, 총 사장교 구간장 500m)이며, 사장재로는 MS (Multi-Strand) 형 케이블이 사용되었다. 실험 당시 화명대교는 중앙경간의 폐합 후 선형관리를 위한 장력조정작업을 수행하였으며, 케이블 재긴장시의 정확한 장력관리를 위하여 로드셀을 이용한 Lift-off test방법으로 케이블의 장력을 측정하였다. 이와 동시에 두 개의 케이블을 대상으로 진동 가속도 센서와 EM 센서를 설치하고 장력 계측을 수행하였으며, 재긴장 단계별 장력 변화치를 지속적으로 계측하였다. 계측된 결과를 바탕으로 케이블 장력 추정 기법의 정확성 및 실교량에서의 활용성을 비교하였다.

  • PDF

A Comparative Study of Finite Element Model-Based Tension Estimation Techniques (유한요소모델 기반 장력추정 기법의 비교 연구)

  • Park, Kyu Sik;Lee, Jung Whee;Seong, Taek Ryong;Yoon, Tae Yang;Kim, Byeong Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.2
    • /
    • pp.165-173
    • /
    • 2009
  • Hanger cables in suspension bridges are constrained by the horizontal clamp. So, the accuracy of estimated tension of hange cable using existing methods based on the simple mathematical model of singel cable decreases as the length of cable decreases because of the flexural rigidity. Therefore, back analysis and system identification techniques based on the finite element model are proposed recently. In this paper, the applicability of the back analysis and system identification techniques are compared using the hanger cable of Gang-An Bridge. The experimental results show that the back analysis and system identification techniques are more reliable than the existing string theory and linear regression method in the view point of the error of natural frequencies. However, the estimation error of tension can be varied according to the accuracy of finite element model in the model based methods. Especially, the boundary condition is more affective when the length of cable is short, so it is important to identify the boundary condition through experiment if it is possible. The tension estimation method using system identification technique is more attractive because it can easily consider the boundary condition and it is not sensitive to the number of input measured natural frequencies.

Field Application Analysis of Cable Tension Measuring Device on Cable-Stayed Bridges (사장교 케이블장력 계측장치의 현장적용성 분석)

  • Lee, Hyun-Chol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.295-311
    • /
    • 2021
  • In this study, an experiment was carried out on the field applicability of tension measuring devices of the cables in cable-stayed bridges. The vibration method was used to estimate the tension of cables of cable-stayed bridge, and the mode characteristics of the cable were analyzed using a cable tension measuring device. GTDL360, NI Module, and 9 Axes Motion Sensorwere applied to estimate the cable tension of five target bridges. Numerical analysis of the five target bridges was conducted to analyze the natural frequency of the cable and cable tension. The estimated tension of the cable based on field measurements and estimated tension of cable by numerical analysis were compared with the estimated tension of the cable based on field measurements. The analysis showed that the measured tension of the cable based on field measurements was within the margin of error. Therefore, it is safe to apply these measuring devices to the site. As a result of comparing and analyzing the values of the acceleration-based cable estimation tension and numerical analysis of the field demonstration bridge, the acceleration-based cable estimation of tension is deemed appropriate within the allowable range. On-site applicability analysis revealed limitations of the measuring devices, such as the installation location of sensors and weather conditions, so continuous follow-up research on smart cable tension measuring systems is expected.

Back Analysis Technique for the Estimation of Tension Force on Hanger Cables (역해석기법을 이용한 행어케이블의 장력 추정)

  • Kim, Nam-Sik;Park, Dong-Uk;Park, Yong-Myung;Cheung, Jin-Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.3 s.55
    • /
    • pp.1-10
    • /
    • 2007
  • In general, the tension forces of hanger cable in suspension bridges play an important role in evaluating the bridge conditions. The vibration method, as a conventional one, has been widely applied to estimate the tension forces by using the measured frequencies on hanger cables. However, the vibration method is not applicable to short hanger cables because the fiequencies of short cables are severely sensitive to flexural rigidity. Thus, in this study, the tension forces of short hanger cables, of which the length is shorter than 10 meters, were estimated through back analysis of the cable fiequencies measured from Gwang-An suspension bridge in Korea. Direct approach to back analysis is adopted using the univariate method among the direct search methods as an optimization technique. The univariate method is able to search the optimal tension forces without regard to the initial ones and has a rapid convergence rate. To verify the feasibility of back analysis, the results from back analysis and vibration method are compared with the design tension forces. From the comparison, it can be inferred that back analysis results are more reasonable agreement with the design tension forces of short hanger cable. Therefore, it is concluded that back analysis applied in this study is an appropriate tool for estimating tension forces of short hanger cables.

Estimation of tension force of stay cables using vibration method (진동법을 이용한 지지케이블의 장력추정)

  • Chang, Kug-Kwan;Jin, Byung-Chang;Chun, Young-Soo;Han, Tae-Kyung;Kang, Woo-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.77-78
    • /
    • 2009
  • This study is to consider the character of cables in six World-Cup stadiums constructed in 2002 in Korea and to inspect problem on application of existing theory. The result of experiment shows that it is possible to determine the tension force of the real cables with an accuracy of 10${\sim}$60 by taking the cable bending stiffness. However, the reliance of the tension force experimentally determined could be changed in tension in the cable.

  • PDF

Application of Back Analysis Technique Based on Direct Search Method to Estimate Tension of Suspension Bridge Hanger Cable (현수교 행어케이블의 장력 추정을 위한 직접탐색법 기반의 역해석 기법의 적용 )

  • Jin-Soo Kim;Jae-Bong Park;Kwang-Rim Park;Dong-Uk Park;Sung-Wan Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.120-129
    • /
    • 2023
  • Hanger cable tension is a major response that can determine the integrity and safety of suspension bridges. In general, the vibration method is used to estimate hanger cable tension on operational suspension bridges. It measures natural frequencies from hanger cables and indirectly estimates tension using the geometry conditions of the hanger cables. This study estimated the hanger cable tension of the Palyeong Bridge using a vision-based system. The vision-based system used digital camcorders and tripods considering the convenience and economic efficiency of measurement. Measuring the natural frequencies for high-order modes required for the vibration method is difficult because the hanger cable response measured using the vision-based system is displacement-based. Therefore, this study proposed a back analysis technique for estimating tension using the natural frequencies of low-order modes. Optimization for the back analysis technique was performed by defining the difference between the natural frequencies of hanger cables measured in the field and those calculated using finite element analysis as the objective function. The direct search method that does not require the partial derivatives of the objective function was applied as the optimization method. The reliability and accuracy of the back analysis technique were verified by comparing the tension calculated using the method with that estimated using the vibration method. Tension was accurately estimated using the natural frequencies of low-order modes by applying the back analysis technique.

Tensile Force Estimation of Externally Prestressed Tendon Using SI technique Based on Differential Evolutionary Algorithm (차분 진화 알고리즘 기반의 SI기법을 이용한 외부 긴장된 텐던의 장력추정)

  • Noh, Myung-Hyun;Jang, Han-Taek;Lee, Sang-Youl;Park, Taehyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.9-18
    • /
    • 2009
  • This paper introduces the application of DE (Differential Evolutionary) method for the estimation of tensile force of the externally prestressed tendon. The proposed technique, a SI (System Identification) method using the DE algorithm, can make global solution search possible as opposed to classical gradient-based optimization techniques. The numerical tests show that the proposed technique employing DE algorithm is a useful method which can detect the effective nominal diameters as well as estimate the exact tensile forces of the externally prestressed tendon with an estimation error less than 1% although there is no a priori information about the identification variables. In addition, the validity of the proposed technique is experimentally proved using a scale-down model test considering the serviceability state condition without and with the loss of the prestressed force. The test results prove that the technique is a feasible and effective method that can not only estimate the exact tensile forces and detect the effective nominal diameters but also inspect the damping properties of test model irrespective of the loss of the prestressed force. The 2% error of the estimated effective nominal diameter is due to the difference between the real tendon diameter with a wired section and the FE model diameter with a full-section. Finally, The accuracy and superiority of the proposed technique using the DE algorithm are verified through the comparative study with the existing theories.

Application of Vibration Method for Estimation of Tension Force of Stay Cables in World-Cup Stadiums (월드컵경기장 지지케이블의 장력추정을 위한 진동법의 적용성 평가)

  • Chang, Kug-Kwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.156-165
    • /
    • 2009
  • This study is to consider the character of cables in six World-Cup stadiums constructed in 2002 and to inspect problems on measurement natural frequencies interpretation and application of existing theory. The results of the experiment were shown that it was possible to determine the tension force of the real cables with an accuracy of 8% by taking the cable bending stiffness. But for the range of cable affected greatly by bending stiffness(${\xi}{\leq}7$), it was appeared the tendency to increase estimated error and was considered to need additional study of this range. Estimated tension error could not be improved so much in comparison to the case using single mode of vibration even through multiple modes of vibration were used.