• Title/Summary/Keyword: 장경간 교량

Search Result 95, Processing Time 0.028 seconds

An Experimental Study on a Narrow and High Capacity PSC Anchorage (세장한 고하중 PSC 정착장치의 실험적 연구)

  • Jeon, Yong-Sik;kang, Sang-Hoon;Jin, Kyung-Seok;Han, Man-Yup
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.39-40
    • /
    • 2009
  • This study is for development the anchorage that for development and practicality a holed precast prestressed concrete girder for forming an I-type Prestressed concrete girder bridge, in which at least one hole is formed in a body portion of the I-type Prestressed concrete girder.

  • PDF

A Study on the Dynamic Behavior a 3 Span Continuous Extradosed PSC Railway Bridge (3경간 연속 Extradosed PSC 철도교의 동적거동에 관한 연구)

  • Kim, Sung-Il;Kim, Yun-Tae;Gill, Tae-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.2 s.33
    • /
    • pp.137-144
    • /
    • 2006
  • The Extradosed PSC bridge is one of the best alternates which not only covers the longer span than PSC box girder and also performs the role of landmark facility with much cheaper cost than cable stayed bridge. Since the cable-stayed long span bridge is more flexible than general medium span bridges and railway bridges can be experienced resonance phenomenon by repeated equidistant axle loading of the train, it is inevitable to consider the dynamic behavior on impact, deflection and so on. In the present study, the dynamic behavior of an Extradosed PSC railway bridge subjected to moving train forces is analyzed. As well as trains which operate in conventional railway tines, KTX train is also considered. For the estimation of dynamic performances of the Extradosed PSC bridge, vertical deflection, accelerations of the slab, end rotation of the girder and impact on pylons and cables are discussed.

Verification of bridges Design criteria for Continuous PSC Box Bridge of High Speed Railway Using Field Test (고속철도 연속 PSC Box 교량에 적용한 설계기준의 현장계측에 의한 검증)

  • Kang, Kee Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.1
    • /
    • pp.53-58
    • /
    • 2006
  • The aim of this paper is to verify the dynamics stability of the continuous PSC Box bridges on the high-speed Kyoung-bu railway when a high-sped train runs through it. An experimental study was carried out to investigate the dynamic behaviors of the PSC Box railway bridge, which had ben designed based on dynamic design criteria. As a result, it was determined that PSC Box railway bridges possess enough dynamics stability for use by high-speed trains. According to the result of a field test (dynamics measuring analysis) that was conducted, an application of the natural frequency of train speed and the adjustment of the bridge's span length will allow one to come up with a more economical and suitable bridge design. Furthermore, it was found that the continuous control of the bridge's dynamic behavior and the bridge's maintena nce require the recording of data. The results of this study are very important in evaluating the structural stability of high-speed line bridges.

A Study on Transport the Hydrological Property of Debris Accumulation at Flood (홍수시 유송잡물 이동에 관한 수리학적 특성연구)

  • Oh, Chae-Yeon;Jun, Kye-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1747-1752
    • /
    • 2008
  • 강원도 산간지역에 위치한 소하천의 경우 유송잡물 및 토석류에 의하여 교량이 파괴되거나, 통수능이 작아져 댐의 역할을 하게 됨으로 인해 교량 상류지역이 침수피해를 입는 경우가 많이 발생하고 있으며 강원도 산간지역에 설치된 소규모 수공구조물들은 교량의 경우 교각이 많아 경간장이 짧고, 교량 상판이 제방고 보다 낮게 설치되어 있는 등 하천흐름에 장애를 주는 많은 요인들을 내재하고 있어 홍수시 하천유량의 증가에 따른 하천흐름 해석, 유송잡물의 발생원인 및 수공구조물에 미치는 영향들에 관한 판단기준 마련이 시급한 실정이다. 유송잡물의 발생경로는 대부분 산지계류에서 집중호우시 산사태발생에 따른 유목과 토석류 발생이 주원인이 된다. 또한 유송잡물은 큰 홍수시 고수위가 오랜 시간동안 지속될 경우 가장 많이 발생하는데 이때 발생한 유송잡물은 개별적으로 이송되고 일반적으로 하천의 중앙으로 이동하는 경향이 있으며 수심이 깊고 유속이 빠른 곳에 집중된다. 또한 유송잡물은 큰 홍수시 고수위가 오랜 시간동안 지속될 경우 가장 많이 발생하는데 이때 발생한 유송잡물은 개별적으로 이송되고 일반적으로 하천의 중앙으로 이동하는 경향이 있으며 수심이 깊고 유속이 빠른 곳에 집중된다. 본 연구에서는 홍수시 유송잡물 이동특성에 대한 국내 외 문헌조사, 현장피해사례조사 및 현장모니터링 조사를 실시하고 1차원 모형인 HEC-RAS와 2차원 모형인 RMA-2를 이용하여 수리모델링 분석에 따른 수치모의를 실시하고 분석하였다.

  • PDF

Improvement plan and factual survey for weirs, drop structures and bridges in medium scale streams of Kyonggi province (경기도 지방하천에서의 보, 낙차공 및 교량 시설물의 실태 및 개선 방안 제시)

  • Noh, Huiseong;Ahn, Taejin
    • Journal of Wetlands Research
    • /
    • v.22 no.1
    • /
    • pp.31-38
    • /
    • 2020
  • Weirs are to secure amount water of streams and drop structures are to enhance stabilization of stream bed and bridges are to connect isolated region, which are called stream crossing structures. In the stream design criteria, directions for minimum size of structures are suggested to secure stability of stream crossing structures. However the sizes of almost all existing weirs and drop structures are not satisfied with the stream design criteria and only 22 percent of the peirs of bridges are satisfied. To enhance hydraulic stability of existing weirs and drop structures, it is required that the ratio of bed protection to apron should be above 3.3. According to factual survey of structures in the sample streams, it has been shown that the longitudinal slope of rapid works with 1:20 is the most reasonable to design velocity if existing weirs and drop structures are rehabilitated into rapid works. It has been known that violating freeboard and span length of piers should make existing bridges reconstructed or removed. However, comprehensive review including deterioration level of bridges, special regulation for span length, etc. should be considered to determine rehabilitation plan of bridges. In this study, a procedure has been suggested to improve hydraulic stability of weirs, drop structures and piers of bridges. Sound environment of stream and reduction of natural disaster could be achieved by improving stability of cross structures, which could be obtained by governmental budget and active stream management including observance of design criteria.

A Study on Static Behavior of 60 m span Half-Decked PSC Girder (Half-Deck을 포함한 60 m 경간 PS 콘크리트거더의 정적 거동 연구)

  • Kim, Tae Min;Park, Jong Heon;Kim, Moon Kyum;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2A
    • /
    • pp.65-73
    • /
    • 2012
  • In this study, we tested structural performance of Half-Decked PSC girder which was developed for applying to long span bridge. We operated 4 point bending test with 60 m span full scale girder designed as simple bridge with hinge-roller boundary condition. Actuators were set on the both sides of girder, 5.5 m away from the center, and 4 stages of cyclic loading was applied at rate of 1 kN/sec. Through stages 1 to 4, loading and unloading 1,000 kN, 1,200 kN, 1,500 kN, and 2,000 kN were repeated and displacement, strain of concrete and steel, crack of girder were checked. From these results, the strength of girder was assessed and resilience and ductility were observed after removing the load. Since initial flexural crack occurred in the vicinity of 1,400 kN, non-linearity of load-displacement curve appeared and definite residual strain was measured at that point. The test result showed that initial cracking load was over twice the DB-24 load which means the developed girder had sufficient strength. To verify the experimental results, we numerically analyze the test and confirmed that the data were similar with results from the test above. Half-Decked PSC type of 60 m-girder developed in this study showed its adequate structural capacity through static loading test, which proved that possibility of applying the girder to actual bridges practically.

Evaluation of Stress Reduction of Continuous Welded Rail of Sliding Slab Track from Track-Bridge Interaction Analysis (궤도-교량 상호작용 해석에 의한 슬라이딩 슬래브 궤도의 장대레일 응력 저감 효과 분석)

  • Lee, Kyoung Chan;Jang, Seung Yup;Jung, Dong-Ki;Byun, Hyung-Kyoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1179-1189
    • /
    • 2015
  • Continuous welded rail on bridge structure experiences typically a large amount of additional longitudinal axial forces due to longitudinal track-bridge interaction under temperature and traction/braking load effect. In order to reduce the additional axial forces, special type of fastener, such as ZLR and RLR or rail expansion joint should be applied. Sliding slab track system is known to reduce the effect of track-bridge interaction by the application of a sliding layer between slab track and bridge structure. This study presents track-bridge interaction analysis results of the sliding slab track and compares them with conventional fixed slab track on bridges. The result shows that the sliding slab track can significantly reduce the additional axil forces of the continuously welded rail, and the difference is more significant for long and continuous span bridge.

Development of Model for Selecting Superstructure Type of Small Size Bridge Using Dual Classification Method (이원분류기법을 이용한 소규모 교량 상부형식선정 모형에 관한 연구)

  • Yun, Su Young;Kim, Chang Hak;Kang, Leen Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.1413-1420
    • /
    • 2015
  • On the design phase of small size bridge, owing to the lack of related guidelines or standards to determine a superstructure type of bridge, many designers tend to select the type depending on expert's experience and knowledge. Moreover, recently, as types of bridge superstructure become diverse and more conditions need to be considered in the project, the decision makes process become complex. This research covered the selection of a superstructure type of a middle or small size bridge with span length of about 50m, which frequently built for national roadway, selecting type of bridge superstructure more systematic way rather than the existing ways to compare construction methods or to depend on expert's experiences. This study proposes to build a bridge superstructure type selection model using one of the techniques of artificial intelligence techniques SVM by applicability of the model examined through the verification of the actual case.

A Guideline for Development of Track-Bridge Structural System with Sliding Layer to Reduce the Track-Bridge Interaction (궤도-교량 상호작용 저감을 위한 슬라이드 층이 고려된 궤도-교량 구조시스템의 개발 방향)

  • Yun, Kyung-Min;Choi, Shin-Hyung;Song, Dae-Seok;Lee, Kyung-Chan;Lim, Nam-Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1469-1476
    • /
    • 2015
  • The bridges take a significant part of entire route in Korea railway, because 70% of Korean territory is covered with mountains. For this reason, span enlargement of railway bridges is more advantageous to increase economic efficiency on the bridge design. However there are many limitations such as additional axial force of the rail, excessive displacement due to track-bridge interaction. In this study, track-bridge interaction analysis was conducted considering the sliding layer which was installed between the track and girder. From the numerical analysis results, the behavior of track-bridge interaction was investigated according to the installation method of sliding layer. Finally, a guideline for development of track-bridge structure system to reduce the track-bridge interaction was proposed.

Resistance Factor Calculation of Driven Piles of Long Span Bridges (장대교량 타입말뚝에 대한 저항계수 산정)

  • Kim, Dong-Wook;Park, Jae-Hyun;Lee, Joon-Yong;Kwak, Ki-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.4
    • /
    • pp.57-65
    • /
    • 2013
  • Assessment of uncertainties of loads and resistances is prerequisite for the development of load and resistance factor design (LRFD). Many previous studies related to resistance factor calculations of piles were conducted for short or medium span bridges (span lengths less than 200m) reflecting the live load uncertainty for ordinary span bridges. In this study, by using a revised live load model and its uncertainty for long span bridges (span lengths longer than 200m and shorter than 1500m), resistance factors are recalibrated. For the estimation of nominal pile capacity (both base and shaft capacities), the Imperial College Pile (ICP) design method is used. For clayey and sandy foundation, uncertainty of resistance is assessed based on the ICP database. As long span bridges are typically considered as more important structures than short or medium span bridges, higher target reliability indices are assigned in the reliability analysis. Finally, resistance factors are calculated and proposed for the use of LRFD of driven piles for ordinary span and long span bridges.