• Title/Summary/Keyword: 잡음 추정

Search Result 1,025, Processing Time 0.027 seconds

Impulse Noise Filtering through Evolutionary Approach using Noise-free Pixels (무잡음 화소를 이용한 진화적인 방법의 임펄스 잡음 필터링)

  • Mahmood, Muhammad Tariq;Choi, Young Kyu
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.5
    • /
    • pp.347-352
    • /
    • 2013
  • In impulse noise filtering techniques window size play an important role. Usually, an appropriate window is determined according to the noise density. A small window may not be able to suppress noise properly whereas a large window may remove edges and fine image details. Moreover, the value of the central pixel is estimated by considering all pixels within the window. In this work, contrary to the previous approaches, we propose an iterative impulse noise removal scheme that emphasizes on noise-free pixels within a small neighborhood. The iterative process continues until all noisy pixels are replaced with the estimated pixels. In order to estimate the optimal value for a noisy pixel, a genetic programming (GP) based estimator is evolved that takes few noise-free pixels as input. The estimator is constituent of noise-free pixels, arithmetic operators and random constants. Experimental results show that theproposed scheme is capable of removing impulse noise effectively while preserving the fine image details. Especially, our approach has shown effectiveness against high impulse noise density.

The Quantization Noise Reducing Effect on Enrage Signals by the Soft-Threshold Technique (Soft-Threshold 기법을 이용한 영상신호의 양자화 잡음 제거 효과)

  • 우창용;박남천
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.393-396
    • /
    • 2003
  • 고압축 영상신호에서 발생된 양자화잡음 제거 효과를 비교하였다. 잡음제거는 Soft-Threshold 기법을 이용하여 각 대역에서 양자화 잡음을 제거하였다. Soft-Threshold 기법에 적용하기 위해 각 대역별 잡음분산을 Monotonic 변환 및 SURE, Visu 방법으로 추정하여 양자화 잡음제거 효과를 PSNR로 비교하였다. 양자화 잡음 제거 결과 영상에 따라 달라지지만 유니폼 양자화 영상에서 약 5~6dB 정도의 영상품질 개선 효과가 있었다.

  • PDF

Denoising of Image Signals by the Soft-Threshold Technique with the Monotonic Transform (웨이브릿 변환 영역에서 단조변환을 이용하여 경계값을 결정하는 Soft-Threshold 기법의 영상잡음 제거)

  • 우창용;박남천
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.281-284
    • /
    • 2000
  • 이 논문은 웨이브릿 변환 영역의 백색 가우시안 잡음이 부가된 영상에서 최고 대역에서는 Donoho가 제시한 Visushrink 방법으로 잡음을 제거하고 최저대역을 제외한 나머지 대역들은 Monotonic 변환을 이용한 각 대역의 잡음편차를 추정하고 이를 VisuShrink 경계값에 적용하여 Soft-Threshold 기법으로 영상잡음을 제거하는 방법을 제안하였다. 실험 결과 이 논문에서 제시된 혼합방법에 의한 잡음 제거는 Donoho가 제시한 VisuShrink 방법보다 1㏈ 정도의 잡음제거 개선 효과가 있었다.

  • PDF

Estimation and Weighting of Sub-band Reliability for Multi-band Speech Recognition (다중대역 음성인식을 위한 부대역 신뢰도의 추정 및 가중)

  • 조훈영;지상문;오영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.6
    • /
    • pp.552-558
    • /
    • 2002
  • Recently, based on the human speech recognition (HSR) model of Fletcher, the multi-band speech recognition has been intensively studied by many researchers. As a new automatic speech recognition (ASR) technique, the multi-band speech recognition splits the frequency domain into several sub-bands and recognizes each sub-band independently. The likelihood scores of sub-bands are weighted according to reliabilities of sub-bands and re-combined to make a final decision. This approach is known to be robust under noisy environments. When the noise is stationary a sub-band SNR can be estimated using the noise information in non-speech interval. However, if the noise is non-stationary it is not feasible to obtain the sub-band SNR. This paper proposes the inverse sub-band distance (ISD) weighting, where a distance of each sub-band is calculated by a stochastic matching of input feature vectors and hidden Markov models. The inverse distance is used as a sub-band weight. Experiments on 1500∼1800㎐ band-limited white noise and classical guitar sound revealed that the proposed method could represent the sub-band reliability effectively and improve the performance under both stationary and non-stationary band-limited noise environments.

Bayesian Image Denoising with Mixed Prior Using Hypothesis-Testing Problem (가설-검증 문제를 이용한 혼합 프라이어를 가지는 베이지안 영상 잡음 제거)

  • Eom Il-Kyu;Kim Yoo-Shin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.3 s.309
    • /
    • pp.34-42
    • /
    • 2006
  • In general, almost information is stored in only a few wavelet coefficients. This sparse characteristic of wavelet coefficient can be modeled by the mixture of Gaussian probability density function and point mass at zero, and denoising for this prior model is peformed by using Bayesian estimation. In this paper, we propose a method of parameter estimation for denoising using hypothesis-testing problem. Hypothesis-testing problem is applied to variance of wavelet coefficient, and $X^2$-test is used. Simulation results show our method outperforms about 0.3dB higher PSNR(peak signal-to-noise ratio) gains compared to the states-of-art denoising methods when using orthogonal wavelets.

A Study on Median Filter using Estimated Mask on the Image Degraded by Salt and Pepper Noise (Salt and Pepper 잡음에 훼손된 영상에서 추정 마스크를 이용한 메디안 필터에 관한 연구)

  • Hong, Sang-Woo;Hwang, Yeong-Yeun;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.932-935
    • /
    • 2015
  • Recently, the image system is utilized in several fields due to the development of multimedia technology. However, the noise occurs according to various causes in the process of image data processing. The noises added to the image include several types according to the cause and shape, and the salt and pepper noise is one of the typical noise types. Thus, this paper proposed the median filter algorithm using the estimated mask in order to remove the salt and pepper noise effectively and also compared this algorithm with the current methods using PSNR(peak signal to noise ratio) as a criterion of judgment.

  • PDF

Optimum Selection of Equalizer Taps Losing Noise Power Estimation (잡음 전력 추정을 이용한 등화기 탭의 최적 선택 방법)

  • 성원진;신동준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.12A
    • /
    • pp.1971-1977
    • /
    • 2001
  • Multipath Rayleigh fading channels for mobile radio transmission can be represented by the linear filter model, and depending on the delay path characteristics, only a selected number of taps may have significance in the receiver structure design. By using tap-selective equalization, reduction in both processing complexity and power consumption can be obtained. In this paper, we present an optimal tap selection method for a given channel model, and demonstrate the performance improvement over an existing method. We show the method performs the CFAR (Constant False Alarm Rate) detection when the noise power information is available, and derive exact expressions of the error probability for the case of noise power estimation. Using the derived formulas and simulation results, it is demonstrated that the error probability quickly approaches to the optimal performance as the number samples used for the noise power estimation increases.

  • PDF

Improvement of Signal-to-Noise Ratio for Speech under Noisy Environment (잡음환경 하에서의 음성의 SNR 개선)

  • Choi, Jae-Seung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1571-1576
    • /
    • 2013
  • This paper proposes an improvement algorithm of signal-to-noise ratios (SNRs) for speech signals under noisy environments. The proposed algorithm first estimates the SNRs in a low SNR, mid SNR and high SNR areas, in order to improve the SNRs in the speech signal from background noise, such as white noise and car noise. Thereafter, this algorithm subtracts the noise signal from the noisy speech signal at each bands using a spectrum sharpening method. In the experiment, good signal-to-noise ratios (SNR) are obtained for white noise and car noise compared with a conventional spectral subtraction method. From the experiment results, the maximal improvement in the output SNR results was approximately 4.2 dB and 3.7 dB better for white noise and car noise compared with the results of the spectral subtraction method, in the background noisy environment, respectively.

Speech Recognition in Noisy Environments Using Modified Gain Function (변형된 이득함수를 이용한 잡음 환경에서의 음성인식)

  • Jin, Ho-Sung;Lee, Sang-Ho;Hong, Jae-Keun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05a
    • /
    • pp.119-123
    • /
    • 2010
  • 본 논문에서는 2단계 잡음제거 방법의 이득함수를 이용한 고조파 복원 잡음제거 방법의 이득함수를 조정하여 기존의 방법보다 음성개선을 향상시켰고, 제안한 방법으로 개선된 음성을 음성인식 기술에 적용하였다. 본 논문에서는 기존 방법으로 음성개선 결과 묵음구간에서 음성구간으로 변화는 구간에서 이전 프레임의 추정된 음성신호로 스펙트럼의 이득함수가 구해져서 음성이 발생하는 구간에서 왜곡이 발생한다. 따라서 본 논문에서는 이러한 현상을 개선시키기 위해 2단계 잡음제거 방법의 이득함수를 추정된 a priori SNR과 비교하여 이득함수를 조정하고, 2단계 잡음제거 방법의 이득함수를 고조파 복원 방법의 이득함수와 비교하여 이득함수를 조정하여 음성을 개선하는 방법을 제안하였다. 그리고 음성인식을 위한 특징벡터 추출을 위해 제안한 방법으로 개선된 음성의 대수 에너지를 정규화 하는 대수 에너지 정규화 방법(Log Energy Normalization)을 음성인식 방법에 적용하였다.

  • PDF

Registration Error-Noise Adaptive Regularized High-Resolution Image Reconstruction (움직임 추정 오류 잡음 적응적 고해상도 영상 복원 알고리즘)

  • 이은실;임원배;강문기
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2000.11b
    • /
    • pp.63-67
    • /
    • 2000
  • 디지털 영상 저장 과정에서 일어나는 문제점은 영상 저장부 센서계의 한계로 나타낼 수 있다. 센서계의 충분하지 못한 집적도는 물리적으로 피할 수 없는 현상이다. 이러한 현상을 디지털 신호처리 기술을 적용하여 극복할 수 있다. 센서계의 한계로 인한 문제는 디지털 영상의 가장 큰 문제중의 하나이며, 이러한 한계를 극복하는 고해상도 영상 복원 방법들은 많은 학자들에 의해 제안되어 왔다. 본 논문에서는, 기존의 고해상도 영상 복원 방법들과는 달리 원영상의 공간적 고주파 성분의 특성을 분석과, 주어진 저해상도 영상들의 부화소 단위 움직임 추정 오류에 대한 분석을 통해 영상 복원과정에 이러한 분석들의 결과를 반영한다. 위에서 언급한 추정 오류는 우리에게 하나의 잡음 형태로 나타날 수 있다. 이 잡음은 추정이 이루어지는 축에 따라 그 양이 다르게 나타나게 되고, 이러한 현상은 목적이 되는 영상의 공간적 고주파 성분의 분포와 밀접한 관련이 있다. 우리는 복원 과정에 기존의 영상복원 방법중의 하나인 정규화 방법을 도입한다. 위에서 분석된 현상을 이 복원 과정에 반영하여 기존의 고해상도 영상 복원 방법보다 향상된 결과를 얻을 수 있었다. 결론적으로, 제안하는 알고리즘은 부화소 단위 움직임 추정 오류의 분석 결과를 반영하므로 이러한 추정 오류에 강한 알고리즘이다.

  • PDF