• Title/Summary/Keyword: 잡음 복원

Search Result 444, Processing Time 0.024 seconds

Speech Enhancement using the Neural Network Filter (신경망필터를 이용한 음질향상)

  • 김종우;공성곤
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.102-105
    • /
    • 2000
  • 본 논문에서는 잡음환경에서의 음성신호복원(Speech Enhancement) 시스템 구현을 목적으로 한다 이를 위한 적응필터로서 LMS(Least Mean Square)알고리즘 FIR필터를 제안한다. 또 정밀 필터로서 신경망 필터를 제안한다. 잡음환경에서의 음성신호 복원 시스템은 잡음에 의해 왜곡된 음성신호에서 잡음성분만을 제거함으로써 음성신호를 복원하는 시스템이다. 일반적으로 잡음은 시변특성과, 비선형적인 전달특성을 갖는다. 그러므로 파라미터가 고정된 필터로는 제어하기가 힘들다. 이러한 이유로 본 논문에서는 LMS알고리즘 적응필터를 적용한다. 신경망 필터는 오차 역전파 학습 알고리즘에 의해 오차를 최소화하는 방향으로 필터의 파라미터를 수정한다. 제안한 필터로 잡음환경에서의 음성신호복원 시스템을 구성하고, 실험을 통해 필터의 성능을 확인한다.

  • PDF

Speech Enhancement the Neural Network Filer (신경망필처를 이용한 음질향상)

  • 김종우;공성근
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.324-329
    • /
    • 2000
  • 본 논문에서는 잡음환경에서의 음질향상(Speed Ehnacement) 시스템 구현을 목적으로 한다. 이를 위한 적응필터로서 LSM(Least Mean square)알고리즘 FIR필터를 적용한다. 또 정밀 필터로서 다충신경망(MLP, Multi-Layer Perceptorn) 필터를 적용한다. 잡음환경에서의 음성신호 복원 및 음질향상 시스템은 잡음에 의해 왜곡된 음성신호에서 잡음성분만을 제거함으로써 음성신호를 복원하는 시스템이다. 신경망 필터는 오차 역전과 학습 알고리즘에 의해 오차를 최소화 하는 방향으로 필터의 피라미터를 수정한다. 제안한 필터로 잡음환경에서의 음성신호복원 시스템을 구서오하고, 실험을 필터의 성능을 확인한다.

  • PDF

Impulse Noise Removal using Past Tow Phase Algorithm (고속2단 알고리즘을 이용한 영상의 임펄스 잡음 제거)

  • Lee, Im-Geun;Han, Soo-Whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.1
    • /
    • pp.95-101
    • /
    • 2007
  • Recently, two phase scheme for removing impulse noise in images is proposed. This algorithms first detect the noise candidates based on the adaptive median filter, and then apply optimizing techniques recursively only to those noise candidates to restore image. Thus the noise detector with high accuracy is important role on this algorithm, In this paper, novel noise detector is proposed, which can detect impose noise with high accuracy while reducing the probability of false detecting image details as impulses. And the method for reducing computational cost of regularization phase is presented also.

Implementation of Neural Filter Optimal Algorithms for Image Restoration (영상복원용 신경회로망 필터의 최적화 알고리즘 구현)

  • Lee, Bae-Ho;Mun, Byeong-Jin
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.7
    • /
    • pp.1980-1987
    • /
    • 1999
  • Restored image is always lower quality than original one due to distortion and noise. The purpose of image restoration is to improve the image quality by fixing the noise or distortion information. One category of spatial filters for image restoration is linear filter. This filter algorithm is easily implemented and can be suppressed the Gaussian noise effectively, but not so good performance for spot or impulse noise. In this paper, we propose the nonlinear spatial filter algorithm for image restoration called the optimal adaptive multistage filter(OAMF). The OAMF is used to reduce the filtering time, increases the noise suppression ratio and preserves the edge information. The OAMF optimizes the adaptive multistage filter(AMF) by using weight learning algorithm of back-propagation learning algorithm. Simulation results of this filter algorithm are presented and discussed.

  • PDF

A Steepest-Descent Image Restoration with a Regularization Parameter (정칙화 구속 변수를 사용한 Steepest-Descent 영상 복원)

  • 홍성용;이태홍
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.9
    • /
    • pp.1759-1771
    • /
    • 1994
  • We proposed the iterative image restoration method based on the method of steepest descent with a regularization constraint for restoring the noisy motion-blurred images. The conventional method proposed by Jan Biemond et al, had drawback to amplify the additive noise and make ringing effects in the restored images by determining the value of regularization parameter experimentally from the degraded image to be restored without considering local information of the restored one. The method we proposed had a merit to suppress the noise amplification and restoration error by using the regularization parameter which estimate the value of it adaptively from each pixels of the image being restored in order to reduce the noise amplification and ringing effects efficiently. Also we proposed the termination rule to stop the iteration automatically when restored results approach into or diverse from the original solution in satisfaction. Through the experiments, proposed method showed better result not only in a MSE of 196 and 453 but also in the suppression of the noise amplification in the flat region compared with those proposed by Jan Biemond et al. of which MSE of 216 and 467 respectively when we used 'Lean' and 'Jaguar' images as original images.

  • PDF

Study on the termination rule in the iterative image restoration algorithm (반복 복원 알고리듬에서의 종료 규칙에 관한 연구)

  • 문태진;김인겸;박규태
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.8
    • /
    • pp.1803-1813
    • /
    • 1997
  • The goal of image restoration is to remove the degradations in a way that the resrored image will best approximate the original image. This can be done by the iterative regularized image restoration method. In any iterative image restoration algorithm, using a "better" termination rule results in both "better" quality of ther restored image and "less" computation, and hence, "faster" and "simp;er" practical system. Therefore, finding a better termmination rule for an iterative image restoration algorithm has been an interesting and improtant question for many researchers in the iterative image restoration. In these reasons, the new termination rule using the estimated distance between the original image and the restored image is proposed inthis paper. Noise suppression parameter(NSP) and the rule for estimating NSP with the noise variance are also proposed. The experimental results shows that the proposed termination rule is superior to the conventional methods.

  • PDF

Impulse Noise Filtering through Evolutionary Approach using Noise-free Pixels (무잡음 화소를 이용한 진화적인 방법의 임펄스 잡음 필터링)

  • Mahmood, Muhammad Tariq;Choi, Young Kyu
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.5
    • /
    • pp.347-352
    • /
    • 2013
  • In impulse noise filtering techniques window size play an important role. Usually, an appropriate window is determined according to the noise density. A small window may not be able to suppress noise properly whereas a large window may remove edges and fine image details. Moreover, the value of the central pixel is estimated by considering all pixels within the window. In this work, contrary to the previous approaches, we propose an iterative impulse noise removal scheme that emphasizes on noise-free pixels within a small neighborhood. The iterative process continues until all noisy pixels are replaced with the estimated pixels. In order to estimate the optimal value for a noisy pixel, a genetic programming (GP) based estimator is evolved that takes few noise-free pixels as input. The estimator is constituent of noise-free pixels, arithmetic operators and random constants. Experimental results show that theproposed scheme is capable of removing impulse noise effectively while preserving the fine image details. Especially, our approach has shown effectiveness against high impulse noise density.

A Study on Reconstruction of Degraded Signal using Wavelet Transform (웨이브렛 변환을 이용한 훼손된 신호의 복원에 관한 연구)

  • Kim Nam-Ho;Bae Sang-Bum;Ryu Ji-Goo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.1
    • /
    • pp.33-38
    • /
    • 2005
  • Degradation is generated by several causes in the process of digitalization or transmission of data. And its essential cause is noise. Therefore, researches for wavelet-based methods which reconstruct signal degraded by noise have continued. In AWGN(addtive white gaussian noise) environment, the general trend for denoising is to use the thresholding method. Reconstructed signal includes a lot of noise because these methods only consider statistical characteristic regarding noise. In this paper, we present a new method which uses the cumulation of wavelet detail coefficients. As a result, reconstruction of edges and denoising performance are improved. Also we compare existing methods using SNR(signal-to-noise ratio) as the standard of judgement of improvemental effect.

  • PDF

Image Restoration Using the Directional Information (방향성 정보를 이용한 영상복원)

  • 김태선;이태홍
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.415-418
    • /
    • 2000
  • 렌즈의 초점이 맞지 않아 흐려지고 잡음으로 훼손된 영상을 복원하는 경우에 일반적으로 정칙화 반복복원방법이 사용된다. 기존의 방법은 영상의 국부적인 특성을 고려하지 않고 영상전체에 일률적으로 정칙화를 행함으로써 윤곽부분에서는 리플잡음을 초래하고 평면부분에서도 잡음중폭을 피할 수 없으며, 또한 시각적으로 효율적이지 못한 면이 있다. 이러한 문제점을 개선하기 위하여, 본 논문에서는 영상을 방향이 없는 평면영역과 4가지 방향을 갖는 윤곽영역으로 나누어, 윤곽방향을 고려한 방향성 정칙화 연산자를 사용하여 평면영역과 윤곽영역의 방향특성에 따라 적응적으로 처리하는 반복복원방법을 제안한다. 제안한 방법은 기존의 방법과 비교하여 평면영역에서의 잡음 평활화가 개선되고 시각적으로 중요한 윤곽부분 복원에 효율적임을 실험결과를 통해 알 수 있었으며 ISNR 면에서도 우수하였다.

  • PDF

Image Restoration using Adaptive Regularization Operator (적응 정칙화 연산자를 이용한 영상복원)

  • 김태선;박차훈
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2001.05a
    • /
    • pp.247-251
    • /
    • 2001
  • 영상을 처리하는 과정에서 광학시스템과 전기시스템의 특성으로 인해 흐려지고 잡음으로 훼손된 영상을 복원하는 경우에 일반적으로 정칙화 반복복원방법이 사용된다. 기존의 방법은 영상의 국부적인 특성을 고려하지 않고 영상전체에 일률적으로 정칙화 연산자를 사용함으로써 윤곽부분에서는 리플잡음을 초래하고 평면부분에서도 잡음증폭을 피할 수 없으며, 또한 시각적으로 효율적이지 못한 면이 있다. 본 논문에서는 이러한 문제점을 개선하기 위하여, 영상의 국부적인 특성을 고려하여 적응 정칙화 파라메타와 적응 정칙화 연산지를 사용하여 평면영역과 윤곽영역의 방향특성에 따라 적응적으로 처리하는 반복복원방법을 제안한다. 제안한 방법은 기존의 방법과 비교하여 평면영역에서의 잡음 평활화가 개선되고 시각적으로 중요한 윤곽부분 복원에 효율적임을 실험결과를 통해 알 수 있었으며 ISNR 면에서도 우수하였다.

  • PDF