• Title/Summary/Keyword: 잠재 서식지

Search Result 68, Processing Time 0.019 seconds

Comparison of potential food resources by barn swallow habitat type (제비 서식지 유형에 따른 잠재적 먹이원 비교)

  • Sung Hoon Choi;Seon-Deok Jin;Tehan Kang;Eun-Jung Kim;Joohyuk Yoon;Hong-Shik Oh
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.4
    • /
    • pp.604-614
    • /
    • 2022
  • This study analyzed habitat status of barn swallows within 800 m and changes in potential food resource occurrence for 63 nests (Seocheon 23, Sejong 40) where barn swallows breeding was confirmed in Seocheon and Sejong in 2019 and 2020. As a result of checking habitat compositions of barn swallows in the study area, Sejong showed more varieties of habitat types than Seocheon, showing a larger number of dominant groups. Such large number of dominant groups was found to be an advantageous habitat factor for producing flying insects as potential food resources for barn swallows. As for the production of potential food resources, Seocheon had the highest production in dwelling and stream and Sejong had the highest production in the stream. The production of potential food resources differed in production season by habitat type. This study analyzed compositions of the habitat around the breeding site of swallows. It provides basic data necessary for protecting barn swallow habitats by comparing the production timing and production volume of potential food resources occurring in the habitat.

Predicting the Potential Habitat and Risk Assessment of Amaranthus patulus using MaxEnt (Maxent를 활용한 가는털비름(Amaranthus patulus)의 잠재서식지 예측 및 위험도 평가)

  • Lee, Yong Ho;Na, Chea Sun;Hong, Sun Hea;Sohn, Soo In;Kim, Chang Suk;Lee, In Yong;Oh, Young Ju
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.672-679
    • /
    • 2018
  • This study was conducted to predict the potential distribution and risk of invasive alien plant, Amaranthus patulus, in an agricultural area of South Korea. We collected 254 presence localities of A. patulus using field survey and literature search and stimulated the potential distribution area of A. patulus using maximum entropy modeling (MaxEnt) with six climatic variables. Two different kinds of agricultural risk index, raster risk index and regional risk index, were estimated. The 'raster risk index' was calculated by multiplying the potential distribution by the field area in $1{\times}1km$ and 'regional risk index' was calculated by multiplying the potential distribution by field area proportion in the total field of South Korea. The predicted potential distribution of A. patulus was almost matched with actual presence data. The annual mean temperature had the highest contribution for distribution modeling of A. patulus. Area under curve (AUC) value of the model was 0.711. The highest regions were Gwangju for potential distribution, Jeju for 'raster risk index' and Gyeongbuk for 'regional risk index'. This different ranks among the index showed the importance about the development of various risk index for evaluating invasive plant risk.

Predicting the Suitable Habitat of Amaranthus viridis Based on Climate Change Scenarios by MaxEnt (MaxEnt를 활용한 청비름(Amaranthus viridis)의 기후변화 시나리오에 의한 서식지 분포 변화 예측)

  • Lee, Yong Ho;Hong, Sun Hee;Na, Chae Sun;Sohn, Soo In;Kim, Myung Hyun;Kim, Chang Seok;Oh, Young-Ju
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.4
    • /
    • pp.240-245
    • /
    • 2016
  • This study was conducted to predict the changes of potential distribution for invasive alien plant, Amaranthus viridis in Korea. The habitats of A. viridis were roadside, bare ground, farm area, and pasture, where the interference by human was severe. We used maximum entropy modeling (MaxEnt) for analyzing the environmental influences on A. viridis distribution and projecting on two different representative concentration pathways (RCP) scenarios, RCP 4.5 and RCP 8.5. The results of our study indicated annual mean temperature, elevation and precipitation of coldest month had higher contribution for A. viridis potential distribution. Projected potential distribution of A. viridis will be increased by 110% on RCP 4.5, 470% on RCP 8.5.

Assessing the Habitat Potential of Eurasian Otter (Lutra lutra) in Cheonggye Stream Utilizing the Habitat Suitability Index (서식지 적합성 지수를 이용한 청계천 수달의 서식지 평가)

  • In-Yoo Kim;Kwang-Hun Choi;Dong-Wook W. Ko
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.2
    • /
    • pp.140-150
    • /
    • 2023
  • The Eurasian otter (Lutra lutra) is an apex predator of the riparian ecosystem. It is a keystone and an indicator species; consequently, its presence suggests a sustainable water environment. Otter is a keystone species as a predator at the top of the food web in the aquatic environment and an indicator species representing the health of the aquatic environment. Although Eurasian otters disappeared from the Han River urban water system because of anthropogenic activities like habitat destruction, poaching, and environmental pollution in the 1980s, the species were sighted in the Cheonggye Stream, Jungrang Stream, and Seongnae Stream, which are urban sections of the Han River, in 2016 and 2021. Therefore, it is pertinent to assess the habitat potential in the area for conservation and management measures to ensure its permanent presence. However, existing studies on otter habitats focused on natural rivers and reservoirs, and there is a limit to applying them to habitats artificially confined habitats in narrow spaces such as tributaries in urban areas of the Han River. This study selected the Cheonggye Stream, an artificially restored urban stream, to evaluate its potential as a habitat for Eurasian otters in urban water environments using the habitat suitability index (HSI). The HSI was calculated with selected environment attributes, such as the cover, food, and threat, that best describe the L. lutra habitat. According to the results, the confluence area of Seongbuk Stream and Cheonggye Stream and the confluence area of Cheonggye Stream and Jungnang Stream were suitable otter habitats, requiring appropriate conservation efforts. The HSI model suggests a valuable method to assess the habitat quality of Eurasian otters in urban water environments. The study is crucial as it can help rehabilitate the species' populations by identifying and managing potential Eurasian otter habitats in highly urbanized areas of the Han River basin and its tributaries.

Occupancy Probability Estimation of Endangered Species Clithon retropictus (멸종위기종인 기수갈고둥의 잠재적 서식지 예측을 위한 점유 확률 추정)

  • Park, Woong-Bae;Lim, Sung-Ho;Won, Doo-Hee;Lee, Kyung-Lak;Hong, Cheol;Do, Yuno
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.1
    • /
    • pp.76-83
    • /
    • 2022
  • We attempted to estimate potential habitats of Clithon retropictus and to determine the community structure of benthic macroinvertebrates by presence of C. retropictus. 2016 to 2018 database of "Survey and Assessment of Estuary Ecosystem Health" by the Ministry of Environment were used to identify the distribution site of C. retropictus. The occupancy model was applied to estimate the potential habitat of C. retropictus. Four diversity indices were used to confirm the community structure of benthic macroinvertebrates. C. retropictus was found in the southern coast area and part of the east coast, and this pattern was consistent with previous studies. Additionally, the occupancy model predicted that a potential habitat of C. retropictus could appear in the west coast area. The community structure of benthic macroinvertebrates was relatively high at the site with C. retropictus than the site without C. retropictus. Therefore, the occupancy model can be considered when conserving C. retropictus inhabiting a limited area. Additionally, C. retropictus can be used to the indicator species that can represent the brackish water environment.

A Study on Suitable Site Selection of Blood Clams (Tegillarca granosa) using Habitat Suitability Factors in Tidal Flat, Cheonsu and Garolim Bays (천수만, 가로림만 갯벌에서 서식지 적합인자를 이용한 꼬막 적지선정 연구)

  • Jeon, Seung Ryul;Heo, Seung;Cho, Yoon-Sik;Choi, Yong-Hyeon;Oh, Geu Rim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.764-772
    • /
    • 2018
  • It is necessary to explore the possibility of alternative habitats and research the characteristics of basic habitats due to seeding, culturing and harvesting of blood clams (Tegillarca granosa) in tidal flats. Currently, dependence on naturally occurring spat is much higher than in other species, which may lead to a reduction in biological resources. In this study, we selected a total of 5 sites (Changgi, Hopo in Cheonsu Bay and Dangsan, Sachang, Wangsan in Garolim Bay) and examined habitat suitability factors for suitable site selection. Also, we considered the relationship of habitat suitability factors (Environment: water content, organic content; survival: mud content, mean size; growth: chlorophyll a). As a result, Wangsan had the highest score of the main habitat of blood clams (Habitat suitability score, Wangsan: 87; Dangsan: 86; Sachang: 81; Hopo: 78; and Changgi: 73). The sediment in Garolim Bay was fine-grained and the seasonal variation was lower than Cheonsu Bay. Therefore, it is considered that Garolim Bay is more suitable as a potential area and easy to utilize the space. In the future, search and selection of potential suitable sites could be considered to solve problems caused by the reduction of biological resources and the production for blood clams.

Predicting the suitable habitat of the Pinus pumila under climate change (기후변화에 의한 눈잣나무의 서식지 분포 예측)

  • Park, Hyun-Chul;Lee, Jung-Hwan;Lee, Gwan-Gyu
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.5
    • /
    • pp.379-392
    • /
    • 2014
  • This study was performed to predict the future climate envelope of Pinus pumila, a subalpine plant and a Climate-sensitive Biological Indicator Species (CBIS) of Korea. P. pumila is distributed at Mt. seorak in South Korea. Suitable habitat were predicted under two alternative RCPscenarios (IPCC AR5). The SDM used for future prediction was a Maxent model, and the total number of environmental variables for Maxent was 8. It was found that the distribution range of P. pumila in the South Korean was $38^{\circ}7^{\prime}8^{{\prime}{\prime}}N{\sim}38^{\circ}7^{\prime}14^{{\prime}{\prime}}N$ and $128^{\circ}28^{\prime}2^{{\prime}{\prime}}E{\sim}128^{\circ}27^{\prime}38^{{\prime}{\prime}}E$ and 1,586m~1,688m in altitude. The variables that contribute the most to define the climate envelope are altitude. Climate envelope simulation accuracy was evaluated using the ROC's AUC. The P. pumila model's 5-cv AUC was found to be 0.99966. which showed that model accuracy was very high. Under both the RCP4.5 and RCP8.5 scenarios, the climate envelope for P. pumila is predicted to decrease in South Korea. According to the results of the maxent model has been applied in the current climate, suitable habitat is $790.78km^2$. The suitable habitats, are distributed in the region of over 1,400m. Further, in comparison with the suitable habitat of applying RCP4.5 and RCP8.5 suitable habitat current, reduction of area RCP8.5 was greater than RCP4.5. Thus, climate change will affect the distribution of P. pumila. Therefore, governmental measures to conserve this species will be necessary. Additionally, for CBIS vulnerability analysis and studies using sampling techniques to monitor areas based on the outcomes of this study, future study designs should incorporate the use of climatic predictions derived from multiple GCMs, especially GCMs that were not the one used in this study. Furthermore, if environmental variables directly relevant to CBIS distribution other than climate variables, such as the Bioclim parameters, are ever identified, more accurate prediction than in this study will be possible.

A Study for Continue and Decline of Abies koreana Forest using Species Distribution Model - Focused in Mt. Baekwun Gwangyang-si, Jeollanam-do - (종 분포 모형을 이용한 구상나무림의 지속 및 쇠퇴에 관한 연구 - 전라남도 광양시 백운산을 중심으로 -)

  • Cho, Seon-Hee;Park, Jong-young;Park, Jeong-Ho;Lee, Yang-Geun;Mun, Lee-man;Kang, Sang-Ho;Kim, Gwang-Hyun;Yun, Jong-Guk
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.3
    • /
    • pp.360-367
    • /
    • 2015
  • The present study investigated the habitats of Korean fir trees (Abies koreana E. H. Wilson) on Mt. Baekwun (Baekwun-san), determined the current distribution, quantified the contribution of biological and non-biological environmental factors affecting the distribution, derived actual and potential habitats, presented a plan for the establishment of protected areas, applied RCP 8.5 climate change scenario to analyze the effects of climate change on the future distribution of Korean fir trees, and predicted future potential habitats. According to the results of the study, 3,325 Korean fir trees (DBH >= 2.5 cm) inhabited Mt. Baekwun, and their distribution area was approximately 150 ha. Populations of Korean fir trees were confirmed to exist at an altitude of 900 m above sea level and were distributed up to 1,200 m. Based on potential distribution, areas appropriate for habitation by Korean fir trees were analyzed to be 450 ha, three times the current distribution area, with a focus on Sang Peak (Sang-bong), Eokbul Peak (Eokbul-bong), Ddari Peak (Ddari-bong), and Dosol Peak (Dosol-bong). The forest stands near Sang Peak, the main peak, were evaluated as those with the most appropriate potential for the habitation of Korean fir trees, and populations of the trees tended to prefer the northern slope rather than the southern slope. When climate change scenario RCP 8.5 was applied and future potential distribution was analyzed, the habitats were expected to decrease in area to 20 ha by 2050, with a focus on Sang Peak, and areas appropriate for habitation were predicted not to exist by 2080. Judging from such results, as global warming accelerates, the habitats of Korean fir trees are clearly expected to move from lowlands to highlands.

Habitat Distribution Change Prediction of Asiatic Black Bears (Ursus thibetanus) Using Maxent Modeling Approach (Maxent 모델을 이용한 반달가슴곰의 서식지 분포변화 예측)

  • Kim, Tae-Geun;Yang, DooHa;Cho, YoungHo;Song, Kyo-Hong;Oh, Jang-Geun
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.3
    • /
    • pp.197-207
    • /
    • 2016
  • This study aims at providing basic data to objectively evaluate the areas suitable for reintroduction of the species of Asiatic black bear (Ursus thibetanus) in order to effectively preserve the Asiatic black bears in the Korean protection areas including national parks, and for the species restoration success. To this end, this study predicted the potential habitats in East Asia, Southeast Asia and India, where there are the records of Asiatic black bears' appearances using the Maxent model and environmental variables related with climate, topography, road and land use. In addition, this study evaluated the effects of the relevant climate and environmental variables. This study also analyzed inhabitation range area suitable for Asiatic black and geographic change according to future climate change. As for the judgment accuracy of the Maxent model widely utilized for habitat distribution research of wildlife for preservation, AUC value was calculated as 0.893 (sd=0.121). This was useful in predicting Asiatic black bears' potential habitat and evaluate the habitat change characteristics according to future climate change. Compare to the distribution map of Asiatic black bears evaluated by IUCN, Habitat suitability by the Maxent model were regionally diverse in extant areas and low in the extinct areas from IUCN map. This can be the result reflecting the regional difference in the environmental conditions where Asiatic black bears inhabit. As for the environment affecting the potential habitat distribution of Asiatic black bears, inhabitation rate was the highest, according to land coverage type, compared to climate, topography and artificial factors like distance from road. Especially, the area of deciduous broadleaf forest was predicted to be preferred, in comparison with other land coverage types. Annual mean precipitation and the precipitation during the driest period were projected to affect more than temperature's annual range, and the inhabitation possibility was higher, as distance was farther from road. The reason is that Asiatic black bears are conjectured to prefer more stable area without human's intervention, as well as prey resource. The inhabitation range was predicted to be expanded gradually to the southern part of India, China's southeast coast and adjacent inland area, and Vietnam, Laos and Malaysia in the eastern coastal areas of Southeast Asia. The following areas are forecast to be the core areas, where Asiatic black bears can inhabit in the Asian region: Jeonnam, Jeonbuk and Gangwon areas in South Korea, Kyushu, Chugoku, Shikoku, Chubu, Kanto and Tohoku's border area in Japan, and Jiangxi, Zhejiang and Fujian border area in China. This study is expected to be used as basic data for the preservation and efficient management of Asiatic black bear's habitat, artificially introduced individual bear's release area selection, and the management of collision zones with humans.

Predicting the Potential Habitat and Future Distribution of Brachydiplax chalybea flavovittata Ris, 1911 (Odonata: Libellulidae) (기후변화에 따른 남색이마잠자리 잠재적 서식지 및 미래 분포예측)

  • Soon Jik Kwon;Yung Chul Jun;Hyeok Yeong Kwon;In Chul Hwang;Chang Su Lee;Tae Geun Kim
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.335-344
    • /
    • 2023
  • Brachydiplax chalybea flavovittata, a climate-sensitive biological indicator species, was first observed and recorded at Jeju Island in Korea in 2010. Overwintering was recently confirmed in the Yeongsan River area. This study was aimed to predict the potential distribution patterns for the larvae of B. chalybea flavovittata and to understand its ecological characteristics as well as changes of population under global climate change circumstances. Data was collected both from the Global Biodiversity Information Facility (GBIF) and by field surveys from May 2019 to May 2023. We used for the distribution model among downloaded 19 variables from the WorldClim database. MaxEnt model was adopted for the prediction of potential and future distribution for B. chalybea flavovittata. Larval distribution ranged within a region delimited by northern latitude from Jeju-si, Jeju Special Self-Governing Province (33.318096°) to Yeoju-si, Gyeonggi-do (37.366734°) and eastern longitude from Jindo-gun, Jeollanam-do (126.054925°) to Yangsan-si, Gyeongsangnam-do (129.016472°). M type (permanent rivers, streams and creeks) wetlands were the most common habitat based on the Ramsar's wetland classification system, followed by Tp type (permanent freshwater marshes and pools) (45.8%) and F type (estuarine waters) (4.2%). MaxEnt model presented that potential distribution with high inhabiting probability included Ulsan and Daegu Metropolitan City in addition to the currently discovered habitats. Applying to the future scenarios by Intergovernmental Panel on Climate Change (IPCC), it was predicted that the possible distribution area would expand in the 2050s and 2090s, covering the southern and western coastal regions, the southern Daegu metropolitan area and the eastern coastal regions in the near future. This study suggests that B. chalybea flavovittata can be used as an effective indicator species for climate changes with a monitoring of their distribution ranges. Our findings will also help to provide basic information on the conservation and management of co-existing native species.