Journal of the Korea Society of Computer and Information
/
v.25
no.10
/
pp.193-201
/
2020
This study is to evaluate the effectiveness of problem-solving ability by applying a team-based learning model to the classes of humanities and social science students, and to conduct a structural model analysis on the relationship between sub-factors. Team-based learning was conducted six times in six teams with 30 students in the second and third grades of the humanities and social sciences. The problem solving ability score of the target students was significantly higher after team-based learning and was statistically significant. There was no problem in normality with the latent variables, which are the sub-factors of problem solving ability, and the factor load value was statistically significant at the .001 level in the confirmatory factor analysis of the observed variables for the latent variables, which was a valid model. A good level of fitness was also shown in the verification of the fitness of the research model. As a result, it was analyzed that latent variables of cause analysis, problem clarification, planning execution, performance evaluation, and alternative development had an indirect or direct influence on each other.
Kim, Ho Jun;Kim, Tae-Jeong;Lee, Kang Wook;Kwon, Hyun-Han
Proceedings of the Korea Water Resources Association Conference
/
2020.06a
/
pp.184-184
/
2020
수자원 계획 및 관리 시 증발산량의 정량적 분석은 필수적으로 고려되는 사항 중 하나이다. 일단위 이하의 잠재증발산량 산정은 세계식량기구(FAO)가 Penman-Monteith 방법을 기반으로 개발한 FAO56 PM 방법을 주로 활용하며, 이는 다른 방법에 비하여 높은 정확성과 적용성이 뛰어나다. 그러나 FAO56 PM 방법의 입력 매개변수는 다양한 기상자료이며, 장기간의 신뢰성 높은 자료를 구축하는 것은 어려운 실정이다. 이에 본 연구에서는 증발산량 공식인 Hargreaves 공식을 활용하여 FAO56 PM 방법으로 산정된 잠재증발산량과 기온차 사이의 시계열 관계를 재구성한 회귀분석 기법을 개발하였다. 개발된 모형에 유역면적을 적용하여 유역면적별 잠재증발산량을 산정하였으며, 이를 기존의 잠재증발산량과의 비교를 통해 모형의 적합성을 평가하였다. 결과적으로, 복잡한 잠재증발산량식을 단순한 대체모형(surrogate model)으로 제시함으로써 효율적인 증발산량 정량적 평가와 제한적인 기상자료 조건에 보편적 활용이 가능하다. 향후 연구에서는 회귀분석방법에 Bayesian 추론기법을 활용하여 구성함으로 잠재증발산량의 불확실성을 정량적으로 표현하고자 한다.
The purposes of the present study were (1) to identify the latent classes depending on youth employees' trajectories in job satisfaction and turnover intention and (2) to test the effects of person-job fit(major fit, education level fit, skill level fit) on job satisfaction and turnover intention using Youth Panel 2001. In order to estimate latent classes of job satisfaction and turnover intention changes simultaneously and study probabilities linking latent class membership in trajectory across the two variables, we applied dual trajectory model, an extension of semi-parametric group-based approach, Results showed that four latent classes were identified for job satisfaction, which were defined, based on the trajectory patterns, as increasing group, decreasing group, medium-level group, and high-level group. And, three latent classes estimated for turnover intention were defined as low-level group, maintaining group, and rapidly decreasing group. To test the effects of person-job fit variables, we added the variables as time-dependant variables to the unconditional latent class model. The effect of education level fit and skill level fit were found significant in the groups which are low in job satisfaction and have high in turnover intention. Findings from this study suggest the need to consider trajectory heterogeneity in the study of youth employees' job satisfaction and turnover intention to capture the dynamic dimension of overlap between the two constructs.
Conjugate prior density families were motivated by considerations of tractability in implementing the Bayesian paradigm. But we consider problem that the conjugate prior p($\Theta$) cannot be used in restriction of the parameter $\Theta$. This article considers the nonconjugate prior problem of hierarchical Poisson model. We demonstrate the use of latent variables for sampling non-standard densities which arise in the context of the Bayesian analysis of non-conjugate by using a Gibbs sampler.
In this research, we develope an estimation method for the estimation of the market potential in the new service (or product) diffusion model. The developed method is based on the ordered response model which can effectively incorporate the survey result of the multi-point scale intention for subscription as well as the responder's characteristics, the characteristics & attitudes of the related service. We also apply the developed method to an estimation of the market potential of the digital multimedia broadcasting (DMB) service. As a result, an optimistic and a pessimistic estimates of DMB market potential are 41.10% and 14.83% of the cellular subscribers respectively.
Communications for Statistical Applications and Methods
/
v.15
no.4
/
pp.633-642
/
2008
Variable selection algorithm for partial least square regression using penalty function is proposed. We use the fact that usual partial least square regression problem can be expressed as a maximization problem with appropriate constraints and we will add penalty function to this maximization problem. Then simulated annealing algorithm can be used in searching for optimal solutions of above maximization problem with penalty functions added. The HARD penalty function would be suggested as the best in several aspects. Illustrations with real and simulated examples are provided.
Unlike randomized trial, statistical strategies for inferring the unbiased causal relationship are required in the observational studies. The matching with the propensity score is one of the most popular methods to control the confounders in order to evaluate the effect of the treatment on the outcome variable. Recently, new methods for the causal inference in latent class analysis (LCA) have been proposed to estimate the average causal effect (ACE) of the treatment on the latent discrete variable. They have focused on the application study for the real dataset to estimate the ACE in LCA. In practice, however, the true values of the ACE are not known, and it is difficult to evaluate the performance of the estimated the ACE. In this study, we propose a method to generate a synthetic data using the propensity score in the framework of LCA, where treatment and outcome variables are latent. We then propose a new method for estimating the ACE in LCA and evaluate its performance via simulation studies. Furthermore we present an empirical analysis based on data form the 'National Longitudinal Study of Adolescents Health,' where puberty as a latent treatment and substance use as a latent outcome variable.
This paper presents ordinal probit semiparametric regression models using Bayesian Spectral Analysis Regression (BSAR) method. Ordinal probit regression is a way of modeling ordinal responses - usually more than two categories - by connecting the probability of falling into each category explained by a combination of available covariates using a probit (an inverse function of normal cumulative distribution function) link. The Bayesian probit model facilitates posterior sampling by bringing a latent variable following normal distribution, therefore, the responses are categorized by the cut-off points according to values of latent variables. In this paper, we extend the latent variable approach to a semiparametric model for the Bayesian ordinal probit regression with nonparametric functions using a spectral representation of Gaussian processes based BSAR method. The latent variable is decomposed into a parametric component and a nonparametric component with or without a shape constraint for modeling ordinal responses and predicting outcomes more flexibly. We illustrate the proposed methods with simulation studies in comparison with existing methods and real data analysis applied to a Korean National Health and Nutrition Examination Survey (KNHANES) 2016 for investigating nonparametric relationship between smoking behavior and coffee intake.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.22
no.6
/
pp.49-65
/
2023
In response to the growing global concern for the environment, the international community has recently committed to achieving 'carbon neutrality.' As a result, numerous studies have been conducted on mode choice models that include carbon emissions as a variable. However, few studies have established a correlation between individual preferences and carbon emissions. In this study, a new mode of transportation named sustainable public transit (SPT), incorporating carbon-reducing transport options like electric scooters, is proposed. Analyzing the individual preferences of commuters on carbon emissions through factor analysis, a stated preference (SP) survey was conducted. A mode choice model for SPT was constructed using multinomial logit models. The results of the analysis showed that gender, income, and specific preferences, such as a passion for exploring new routes, a preference for intermodal transfers, knowledge of carbon reduction, and carbon reduction practices, significantly influence latent preferences for SPT. Therefore, this study is significant as it considers carbon emissions as an attribute variable during the construction of mode choice models and reflects the individual preference variables associated with carbon reduction.
Journal of the Korean Society for Library and Information Science
/
v.56
no.4
/
pp.455-472
/
2022
The purpose of this study is to analyze variables affecting the number of circulated books which is one of the indicators representing the library use behavior. For the analysis, 2015-2019 data for public libraries was acquired from the National Library Statistics System. The Latent Growth Model estimating a latent intercept and a latent slop based on the individual library trajectories was applied. The results are as followed; first, the circulation rate tends to be decreased. Second, the most affecting factor on the library circulation decrease was the collection budget. This study suggests increasing a collection budget in order to prevent the library circulation decrease while the library is operating in a daily routine.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.