Collaborative tagging systems allow users to attach tags to diverse sharable contents in social networks. These tags provide usefulness in reusing the contents for all community members as well as their creators. Three-dimensional data composed of users, items, and tags are used in the collaborative tag-based recommendation. They are generally more voluminous and sparse than two-dimensional data composed of users and items. Therefore, there are many difficulties in applying existing collaborative filtering methods directly to them. Latent factor models, which are also successful in the area of collaborative filtering recently, discover latent features(factors) for explaining observed values and solve problems based on the features. However, establishing the models require much time and efforts. In order to apply the latent factor models to three-dimensional collaborative filtering data, we have to overcome the difficulty of establishing them. This paper proposes various methods for determining preferences of users to items via establishing an intuitive model by assuming tags used for items as latent factors to users and items respectively. They are compared using real data for concluding desirable directions.
This Study analyzed heavy snow properties according to the area that was based by winter weather properties and the damage data by the heavy snow among each local government of Chungcheongbuk-do. The result of analysis, Jecheon-si and Boeun-gun are represented the highest dangerous regions by potential degree of risk by average amount of snowfall for 35 years. But, the potential degree of risk by maximum amount of snowfall for 35 years is different with it. Cheongju-si and Youngdong-gun, Goesan-gun, Boeun-gun are represented the highest dangerous regions. Examining the frequency of regions with potential danger factors according to the characteristics of heavy snowfall, Boeun-gun and Jecheon-si, Goesan-gun, Youngdong-gun, Cheongju-si is derived the highest dangerous regions in Chungcheongbuk-do.
Purpose: In this study, potential demographic, social, and economic factors causing tuberculosis were identified, and eight cities in South Chungcheong Province were compared and analyzed with the IPA method. Method: The factors potentially affecting the prevalence of tuberculosis were categorized demographically, socially, and economically, and selected through brainstorming. Furthermore, potential factors affecting tuberculosis were derived using the revised IPA. Based on this analysis, areas with a potential risk of tuberculosis were classified, and the following policy implications were suggested. Result: The analysis found the three cities of Nonsan, Boryeong, and Gongju to have the highest potential risk of tuberculosis, and the frequency of potential risk factors in the above three cities to be 6 or more. Thus, an urgent policy response to prevent tuberculosis in these regions is required. Conclusion: According to the results of this study, it is necessary to take potential risk factors into account when promoting tuberculosis prevention policies and projects in South Chungcheong Province.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2015.07a
/
pp.335-337
/
2015
사고 준사고 선박의 경우 하인리히 법칙에 의거 사고 전 잠재적 요인을 내재하고 있는 선박이 그 예후를 미리 보이는 경우가 많다. 이러한 잠재적 요인의 집계 및 통계를 통해 사고 유발 가능선박을 분리하고, 이 선박들에 한해서는 기존의 사고 후 대책 마련 방식에서 벗어나 대형 사고를 예방하기 위한 방식으로 접근하는 것이 철저하게 필요하다고 본다. 그리하여 동해 VTS 관제 구역 내 사고 유발 가능 선박에 나타났던 잠재적 요인의 예시들과, 기존 접근 방법의 한계점에 대해 논하고, 분리된 선박에 대해 어떠한 식으로 관리할 것인지 논해보고자 한다.
Kim, Jeongha;Lee, Jipyeong;Jang, Seonghyun;Cho, Yoonho
Journal of Intelligence and Information Systems
/
v.29
no.1
/
pp.249-263
/
2023
Collaborative Filtering, a representative recommendation system methodology, consists of two approaches: neighbor methods and latent factor models. Among these, the latent factor model using matrix factorization decomposes the user-item interaction matrix into two lower-dimensional rectangular matrices, predicting the item's rating through the product of these matrices. Due to the factor vectors inferred from rating patterns capturing user and item characteristics, this method is superior in scalability, accuracy, and flexibility compared to neighbor-based methods. However, it has a fundamental drawback: the need to reflect the diversity of preferences of different individuals for items with no ratings. This limitation leads to repetitive and inaccurate recommendations. The Adaptive Deep Latent Factor Model (ADLFM) was developed to address this issue. This model adaptively learns the preferences for each item by using the item description, which provides a detailed summary and explanation of the item. ADLFM takes in item description as input, calculates latent vectors of the user and item, and presents a method that can reflect personal diversity using an attention score. However, due to the requirement of a dataset that includes item descriptions, the domain that can apply ADLFM is limited, resulting in generalization limitations. This study proposes a Generalized Adaptive Deep Latent Factor Recommendation Model, G-ADLFRM, to improve the limitations of ADLFM. Firstly, we use item ID, commonly used in recommendation systems, as input instead of the item description. Additionally, we apply improved deep learning model structures such as Self-Attention, Multi-head Attention, and Multi-Conv1D. We conducted experiments on various datasets with input and model structure changes. The results showed that when only the input was changed, MAE increased slightly compared to ADLFM due to accompanying information loss, resulting in decreased recommendation performance. However, the average learning speed per epoch significantly improved as the amount of information to be processed decreased. When both the input and the model structure were changed, the best-performing Multi-Conv1d structure showed similar performance to ADLFM, sufficiently counteracting the information loss caused by the input change. We conclude that G-ADLFRM is a new, lightweight, and generalizable model that maintains the performance of the existing ADLFM while enabling fast learning and inference.
1990년부터 14년간 총 65건의 회전익 사고가 발생하여 연 평균 4.6건의 사고가 발생하였다. 항공대국으로 안전한 수준에 이르기 위하여 회전익 항공기 사고의 잠재적 조건 선행 분석자료 및 연구결과 등을 활용하여 회전익 항공기 항공안전대책을 살펴보았다. 소방항공의 경우 인적요인이 사고 발생원인의 57%로 주 요인으로 나타났으며, 국가기관에서도 2000년 이후 사고 중에서 인적요인이 주 요인으로 인적요인이 중요한 개선대상으로 밝혀졌다. 항공안전 전문가들과 인터뷰를 실시하여 회전익 항공기의 잠재 조건에 대해 논의하였다.
Mode choice behavior is associated with travelers' latent behavior that is an unobservable preference to travel behavior or mode characteristics. This paper specifically addresses the problem of unobservable factors, that is latent behavior, in mode choice models. Consideration of latent behavior in mode choice models reduces the errors that come from unobservable factors. In this study, the authors defined the latent variables that mean a quantitative latent behavior factors, and developed the combined RP/SP model with latent variables using the mode choice behavior survey data. The data has traveler's revealed preference of existent modes along the Han River and stated preference of new water transit on the Han River. Also, The data has travelers' latent behavior. Latent variables were defined by factor analysis using the latent behaviour data. In conclusion, it is significant that the relationship between traveler's latent behavior and mode choice behavior. In addition, the goodness-of-fit of the mode choice models with latent variables are better than the model without latent variables.
본 연구에서는 로저스의 개혁확산이론(Rogers, 2003)과 데이비스의 기술수용모형(Davis, 1989)을 바탕으로 실감공간기술에 대한 잠재적 사용자의 태도를 분석하였다. 개혁확산이론과 기술수용모형을 바탕으로 한 선행 연구들을 통해 새로운 미디어의 채택에 영향을 미치는 다양한 요인들을 고찰할 수 있었다. 개혁확신이론을 통해서는 개인의 심리적 수준은 물론 인구통계학적 수준, 사회적 수준 등 다양한 요인과 그 하부 요인이 도출되었으며, 기술수용모형을 통해서는 개혁확산이론을 통해 도출된 다양한 변인들이 실감공간기술에 적용될 수 있다는 가설을 설계할 수 있었다. 개혁확산 이론과 기술수용모형을 통해 이미 설명된 기존의 뉴미디어들과 달리 실감공간기술이 개발 진행 중이라는 점과 그 다양한 발전 가능성이라는 특징을 고려했을 때, 실감공간기술의 확산을 어떻게 예측하고 설명할 수 있는지 고찰하는 것 또한 본 연구의 목적이라고 할 수 있다. 본 연구에서는 실감공간기술에 대한 잠재적 사용자들의 사용의도에 영향을 미치는 요인의 영향력을 살펴봄으로써 실감공간기술의 다양한 활용 방안에 대하여 모색하였다.
Analyzing mode choice among transportation demand estimate procedures is complicated and understanding characteristics of travelers is also difficult. Generally, it is well known that traveler choose mode considering psychometric factors and characteristic besides socio-demographic indicators. Accordingly, many researches has investigated on methodology that can be applied in mode choice to reflect psychometric factor or specific preference. Latent Class Analysis among various studies is recognized as the theoretically potential approach. This study focuses on class segmented using latent class cluster to analyze impact that included psychometric factors and characteristics on mode choice. It also provides evidence that mode choice model for each class and mode choice model not considering latent class are different. This study based on citizen's stated preference and revealed preference on a new transit on the Han river shows that latent class cluster analysis is the potential approach considering latent preference.
Journal of the Korea Academia-Industrial cooperation Society
/
v.20
no.3
/
pp.71-81
/
2019
To extend the potential benefits of error, the current study examined factors that affect students' error perception in the classroom. An experimental design was used to measure relations of classroom goal structure, feedback, and social relationships on students' perception of error. A total of 316 fourth-, fifth-, and sixth-grade elementary students participated as part of their regular class curriculum. Self-reported questionnaires were administered to measure students' perception of errors and relationships with teacher and peers, and then students were manipulated by classroom goal structure and feedback. Multiple regression analysis results suggested that students' perception of learning from error was affected mostly by relationships with peers, followed by relationships with teacher and the type of feedback. Students' perception of risk taking for error was also affected by relationships with peers and teacher, followed by the classroom goal structure. However, classroom goal structure and feedback did not affect their perception of thinking about error to improve their learning as well as error strain. These results imply how the classroom climate should be structured to improve perception of errors to improve student's learning.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.