A linear regression method is commonly used to analyze data because of its simplicity and applicability; however, it is well known that data may contain some outliers and influential cases that may have a harmful effect on a statistical analysis. Thus detection and examination of outliers or influential cases are important parts of data analysis. In detecting multiple outliers, masking effects usually occur and make it difficult to identify the true outliers. We propose to use dynamic plots as a method resistant to masking effect. The procedure using dynamic plots is useful to find appropriate basic sets with which a dependent outliers detection method start and detect a true outliers set. Examples are given to demonstrate the effectiveness of the suggested idea.
Trend surface analysis (TSA) was selected to estimate a natural trend in precipitation and to examine urban influences on precipitation over five urban areas (Houston, Dallas, and San Antonio, TX; New Orleans, LA; and Memphis, TN) in the southern United States. TSA was applied to monthly, seasonal and annual normal precipitation data for the period of 1961-1990. Winter and spring have more trends than summer and fall and the period of November through March have more marked trends than the period of April through October in all study areas except the Houston area. Residual maps for Houston, Dallas and San Antonio have positive residuals in the city and downwind during summer indicating that urban effects on precipitation enhancement in these areas do exist during these seasons after eliminating the natural precipitation variations. Summer residual maps for New Orleans and Memphis have no distinct precipitation increases due to urban effects. The June residual map in New Orleans and the July residual map in Memphis have positive values in the city, but the magnitude of values is smaller than other cities.
Lots of characteristics such as dwelling, neighborhood, and accessibility characteristics affect to the housevalue. Many researches have been done to identify values of each characteristic using hedonic technique. However, there is a limit to identify interaction of each characteristic and variation of each characteristic among the accessibility context. This paper has implemented the Expansion Method research paradigm to model the housevalue determination process in the city of Seoul. The findings of this paper have revealed the presence of contextual variations in the housevalue determination process. The initial model for housevalue reveals that as $F_1$ increases (i.e., larger the number of rooms/bathrooms, larger parking space) and/or $F_2$ increases (i.e., higher owner occupied housing units, higher apartment housing units) and/or $F_3$ increases, (i.e., higher the ratio of higher than college graduated households, 8 school zone, older housing units) the estimated housevalue increases. However, the above relationships drift across their respective contexts. The houses which have negative $F_1$ value, the housevalue does not fluctuate according to the distance to the city center or subcenters. However, the houses which have positive $F_1$ value, the closer to the subcenters or shorter to the river, the higher the estimated housevalues. On the other hand, in areas far from the subcenters, the estimated housevalues does not fluctuate much according to the corresponding $F_2$ level. In areas close to the subcenters, the estimated housevalues vary tremendously according to the $F_2$ value. In the residual analysis, it is revealed that large apartment which are located in Kangnam, IchongDong, MokDong are underestimated. This paper has contributed to our understanding of the housevalue determination process by providing an alternative conceptualization to the traditional approach.
The purpose of this paper is to determine the atmospheric conditions in whih urban areas affect the precipitation processes and to evaluate whether certain weather types show more apparent urban effect on precipitation modification over five cities in the southem United States. Each heavy rainstorm is classified into one of three synoptic weather types (frontal storm, airmass storm or tropical disturbance storm). Heavy rainstorm day is defined as day producing rainfall totals that equal o exceed 2 inches (50.08 mm). Houston, Dallass and San Antonio show possible urban effects on rainfall totals and frequencies of heavy rainstorms by airmass storm type while New Orleans and Memphis do not reveal any distinct precipitation enhancements through the synoptic analysis. The results of TSA (Trend Surface Analysis) show that frontal and tropical disturbance storm types have stronger climatic gradients than airmass types and the patterns of rainfall totals have stronger trends than those of rainfall frequencies for the five cities. The results suggest that airmass type events may well reveal possible precipitation enhancements due to urban effects since they are less influenced by a strong climate gradient and they provide favorable conditions for development of urban heat islands. Residual analysis confirms that rainfall totals and frequencies of heavy rainstorms by airmass storm type have positive residuals over the city or the major effect area.
Journal of the Korean association of regional geographers
/
v.16
no.5
/
pp.610-622
/
2010
The proportion of overweight and obese individuals in the United States has been continuously increasing up to recently. Many studies related to obesity have concentrated on jurisdictional levels of aggregation, making it very difficult to dearly illustrate at risk regions. In other words, little research has been conducted in relation to spatial patterns considering spatial dependency and heterogeneity by spatial autocorrelation models over space. In response, this research analyzes spatial patterns between overweight/obesity and risk factors, such as high blood pressure and diabetes, over space. Specifically, the Moran''s I and Geary''s C will be conducted for global and local measures. What is more, the Ordinary Least Square (OLS) linear regression and Geographically Weighted Regression methods will be applied to identify spatial dependency and spatial heterogeneity. Data provided by the Behavioral Risk Factor Surveillance System (BRFSS) have Body-Mass Index (BMI) rates, containing 4 rates of under, healthy, overweight, and obesity. In addition, high blood pressure and diabetes rates in the United States will be used as independent variables. Lastly, we are confident that this research will be beneficial for a decision maker to make a prevention plan for obesity.
Journal of the Korean Data and Information Science Society
/
v.28
no.5
/
pp.1055-1067
/
2017
Most previous works to study for the depression of the disabilities in Korea have analyzed the repeated measured data of each individual under the mutually independent assumption. In this study, Korea Welfare Panel data of the disabilities surveyed additionally every three years are analyzed to detect the significant exploratory variables by the linear mixed models. A suitable correlation matrix is considered for the dependency of repeated measurement of each individual. The random effect to reflect the characteristics of the individuals as well as the fixed effect is included in the fitted linear mixed model. By the residual plot of the fixed effect model, the problem that the averages of residuals of each individual do not seem to be around zero is described. Further, the residual plot and the Q-Q plot coming from the selected final model are shown that the problem is modified well.
Jintaek, Kang;Jongsu, Yim;Chiwung, Go;Sangmin, Sung;Yeongmo, Son
Journal of Korean Society of Forest Science
/
v.111
no.4
/
pp.630-643
/
2022
This study was conducted to derive the fresh weight and dry weight estimation formulas of Pinus densiflora and prepare a weight table using them. Aone-variable formula using only the diameter at breast height (DBH) and a two-variable formula using DBH and height were used to calculate the fresh and dry weight. Each equation was verified using statistics, such as fit index, standard error, and residuals. Theoptimal equation was evaluated for applicability by calculating the weight as a coefficient derived from a statistical verification. W = bD+cD2 was selected for the one-variable equation, while W = aDbHc was selected for the two-variable equation. The fit index of the former was 0.87-0.92, while that of the latter was 0.94-0.98, both of which showed a good fit. A new weight table was prepared using the optimal estimation formula, and it was compared and analyzed with a previous weight table. Analysis results showed that Gangwon pine had higher values in the previous weight table, while pines in the central region had higher values in the newly created weight table.
Journal of the Korean Association of Geographic Information Studies
/
v.20
no.3
/
pp.125-140
/
2017
Until recently, regression based spatial interpolation methods and Kriging based spatial interpolation methods have been largely used to estimate land price or housing price, but less attention has been paid on comparing the performance of these spatial interpolation methods. In this regard, this research applied regression based spatial interpolators and Kriging based spatial interpolators for estimating the land prices in Dalseo-gu, Daegu metropolitan city and evaluated the accuracy of eight spatial interpolators. OLS, SLM, SEM, and GWR were used as regression based spatial interpolators while SK, OK, UK, and CK were employed as Kriging based spatial interpolators. The global accuracy was statistically evaluated by RMSE, adjusted RMSE, and COD. The relative accuracy was visually compared by three-dimensional residual error map and scatterplot. Results from statistical and visual analyses indicate that GWR reflecting the spatial non-stationarity was a relatively more accurate spatial predictor to estimate land prices in the study area than SAR and Kriging based spatial interpolators considering the spatial dependence. The findings from this research will contribute to the secondary research into analyzing the urban spatial structure with land prices.
This study was conducted to estimate the volume growth by forest type and major species using the national forest resource inventory and to predict the final age of maturity by deriving the mean annual increment (MAI) and the current annual increment (CAI). We estimated the volume growth using the Chapman-Richards model. In the volume estimation equations by forest type, coniferous forests exhibited the highest growth. According to the estimation formula for each major species, Larix kaempferi will grow the highest among coniferous tree species and Quercus mongolica among broad-leaved tree species. And these estimation formulas showed that the fitness index was generally low, such as 0.32 for L. kaempferi and 0.21 for Quercus variabilis. In the analysis of residual amount, which indicates the applicability of the volume estimation formula, the estimates of the estimation formula tended to be underestimated in about 30 years or more, but most of the residuals were evenly distributed around zero. Therefore, these estimation formulas have no difficulty estimating the volume of actual forest species in Korea. The maximum age attained by calculating MAI was 34 years for P. densiflora, 35 years for L. kaempferi, and 31 years for P. rigida among coniferous tree species. In broad-leaved tree species, we discovered that the maximum age was 32 years for Q. variabilis, 30 years for Q. acutissima, and 29 years for Q. mongolica. We calculated MAI and CAI to detect the point at which these two curves intersected. This point was defined by the maximum volume harvesting age. These results revealed no significant difference between the current standard cutting age in public and private forests recommended by the Korea Forest Service, supporting the reliability of forestry policy data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.