• Title/Summary/Keyword: 잔존내진성능

Search Result 6, Processing Time 0.023 seconds

Residual Seismic Capacity Evaluation of RC Frames with URM Infill Wall Based on Residual Crack Width and Damage Class (잔류균열폭 및 손상도에 기초한 무보강 조적벽체를 갖는 RC 골조의 잔존내진성능 평가)

  • Choi, Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.5
    • /
    • pp.41-50
    • /
    • 2009
  • Following an earthquake, the major concerns for damaged buildings are their safety/risk in the event of aftershocks, and thus a quantitative damage assessment must be performed in order to evaluate their residual seismic capacity and to identify necessary actions for the damaged buildings. Post-event damage evaluation is therefore as essential for the quick recovery of a damaged community as pre-event seismic evaluation and strengthening of vulnerable buildings. The objective of this study is to develop a post-earthquake seismic evaluation method for RC frames with URM infill wall for typical school buildings. For this purpose, full-scale, one-bay, single-story specimens having different axial loads in columns are tested under cyclic loadings. During the tests, residual crack widths, which can also be found in damaged buildings, are measured in order to estimate the residual seismic capacity from the observed damage. In this paper, the relationship between the measured residual crack width and the residual seismic capacity is discussed analytically and experimentally, and reduction factors are proposed to estimate the residual seismic capacity based on the observed damage level.

A Seismic Capacity of R/C Building Damaged by the 2016 Gyeongju Earthquake Based on the Non-linear Dynamic Analysis (비선형동적해석에 의한 2016년 경주지진에서 지진피해를 받은 R/C 건물의 내진성능에 관한 연구)

  • Jung, Ju-Seong;Lee, Kang Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.137-146
    • /
    • 2018
  • On September 12, 2016, the Gyeongju District was strongly shaken with M=5.8, which was the largest one since measured by the actual seismometer in Korea, and some buildings were damaged. The field survey of reinforced concrete school buildings in the affected area was carried out, and their residual seismic capacities(R) were estimated based on the Japanese Standard for post-earthquake damage evaluation. In this study, the M school, which was greatly damaged by the 2016 Gyeongju Earthquake, was selected, and its damage level was evaluated on the basis of the Japanese Standard. The seismic capacity of the M school was also evaluated using the nonlinear dynamic analysis, and relationships between its damage level and seismic capacity was also conducted to investigate causes of earthquake damage. The damage level of M school was classified into light with R=88.2%. The result of the dynamic analysis agreed reasonably well with the damage of M school sustained by the 2016 Gyeongju earthquake. This will provide fundamental data for earthquake preparedness measures, such as the seismic rehabilitation of low-rise reinforced concrete buildings in Korea.

A New Methodology for Seismic Capacity Evaluation of Low-rise R/C Buildings (비선형요구내력스펙트럼을 이용한 저층 R/C 건물의 내진성능 평가법)

  • Lee, Kang Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.106-115
    • /
    • 2011
  • This study proposed a new methodology for seismic capacity evaluation of low-rise reinforced concrete (RC) buildings based on non-linear required spectrum. In order to verify the reliability of the proposed method, relationships between results obtained using the proposed method and the non-linear dynamic analyses were investigated. Compared with the seismic protection index (Es=0.6) defined in the Japanese Standard, the applicability of the method was also estimated. Research results indicate that the method proposed in this study compares reasonably well with the detailed evaluation methods. Using the seismic evaluation method developed in this study, the seismic capacity category and earthquake damage degree of low-rise RC buildings corresponding to a specific earthquake level can be effectively estimated.

A New Methodology of Earthquake Damage Evaluation for R/C Buildings Based on Non-linear Required Strength Spectrum - Part II. A example of Earthquake Damage Evaluation - (비선형요구내력스펙트럼을 이용한 철근콘크리트건물의 지진손상도 평가법 - Part II. 지진손상도 평가법 평가사례 -)

  • Wi, Jeong-Du;Jeon, Kyeong-Joo;Lee, Kang-Seok;Choi, Yun-Cheul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.113-114
    • /
    • 2010
  • In this study, the earthquake damage evaluation of a R/C frame building is carried out based on the method proposed in Part I. Using the proposed method, the earthquake damage of building system based on non-linear required strength spectrum can be effectively evaluated without using the detailed seismic evaluation methods, including non-linear dynamic analyses, capacity spectrum method, etc.

  • PDF

Evaluation of Post-earthquake Seismic Capacity of Reinforced Concrete Buildings suffering from earthquakes (지진피해를 받은 철근콘크리트 건물의 잔존내진성능평가)

  • Kang, Dae-Eon;Yi, Waon-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.105-108
    • /
    • 2005
  • In damage investigation of building structures suffering from earthquake, estimation of residual seismic capacity is essential in order to access the safety of the building against aftershocks and to judge the necessity of repair and restoration. It has been proposed that an evaluation method for post-earthquake seismic capacity of reinforced concrete buildings based. on the residual energy dissipation capacity (the residual seismic capacity ratio )in lateral force-displacement curve of structural members. The proposed method was adopted in the Japanese 'Damage Level Classification Standard' revised in 200l. To evaluate the residual seismic capacity of RC column, experimental tests with positive and negative cyclic loading was carried out using RC building column specimen. Parameters used by the experiment are deformability and member proportion. From the test results, it is appropriated that the residual seismic capacity of RC buildings damaged by earthquakes is evaluated using the method in the Guideline.

  • PDF

A New Methodology of Earthquake Damage Evaluation for R/C Buildings Based on Non-linear Required Strength Spectrum - Part I. Concept of Earthquake Damage Evaluation - (비선형요구내력스펙트럼을 이용한 철근콘크리트건물의 지진손상도 평가법 - Part I. 지진손상도 평가법 개념 -)

  • Lee, Kang-Seok;Wi, Jeong-Du;Jeon, Kyeong-Joo;Choi, Yun-Cheul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.111-112
    • /
    • 2010
  • This study proposes a new methodology of earthquake damage evaluation for R/C Buildings combined with shear and flexural failure systems, based on non-linear required strength spectrum. Part I shows a concept of methodology of earthquake damage evaluation, which is estimated on the basis of system ductility, non-linear required strength spectrum and remaining seismic capacity ratio.

  • PDF