• Title/Summary/Keyword: 잔류응력 분포

Search Result 232, Processing Time 0.028 seconds

Prediction of Weld Residual Stress of Narrow Gap Welds (협개선 용접부에 대한 용접잔류응력 예측)

  • Yang, Jun-Seog;Heo, Nam-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.1
    • /
    • pp.79-83
    • /
    • 2010
  • The conventional welding technique such as shield metal arc welding has been mostly applied to the piping system of the nuclear power plants. It is well known that this welding technique causes the overheating and welding defects due to the large groove angle of weld. On the other hand, the narrow gap welding(NGW) technique has many merits, for instance, the reduction of welding time, the shrinkage of weld and the small deformation of the weld due to the small groove angle and welding bead width comparing with the conventional welds. These characteristics of NGW affect the deformation behavior and the distribution of welding residual stress of NGW, thus it is believed that the residual stress results obtained from conventional welding procedure may not be applied to structural integrity evaluation of NGW. In this paper, the welding residual stress of NGW was predicted using the nonlinear finite element analysis to simulate the thermal and mechanical effects of the NGW. The present results can be used as the important information to perform the flaw evaluation and to improve the weld procedure of NGW.

A study on simplified fatigue design methodology for composite structures (복합재구조물에 대한 단순화된 수명평가방법 고찰)

  • 김성준
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.75-78
    • /
    • 2002
  • A simplified methodology is presented to predict fatigue life and residual strength of composite structures. To avoid excessive amount of tests that are required for model characterization, strength degradation parameter is assumed as function of fatigue life. S-N curve is used to extract fatigue life that is required to characterize the stress levels comprising a randomly-ordered load spectrum. And different stress ratios are handled with Goodman correction approach(fatigue envelope). It is assumed that the residual strength is a function of the number of loading cycles and applied fatigue stress amplitude. And the residual strength distribution after an arbitrary load cycles is represented by two parameter Weibull functions.

  • PDF

Finite Element Analyses on Local Buckling Strength of Polygonal-Section Shell Towers (축방향 압축을 받는 다각형 단면 쉘 기둥구조의 국부좌굴강도에 관한 해석적 연구)

  • Park, Seong-Mi;Choi, Byung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1900-1907
    • /
    • 2012
  • Since the subpanels of polygonal-section shell have the corners of an obtuse angle larger than 90 degree unlike general plate or box-section structures, this could have an influence on forming nodal lines against local plate buckling or stress distributions. However, there is not sufficient material in the relevant study results or design recommendations. The very feasible models of the initial imperfections were acquired through the literature studies and then the parametric studies were conducted along with the initial imperfection models by using the finite element method. The parameters like the size of residual stresses, the portion of compressive residual stresses, and steel grades were considered. From the parametric studies, it was found that the maximum residual stress is more influential factor than the distribution pattern of residual stresses. In addition, The design strength equations for the simply supported plates can be applicable to the determination of the local buckling strength of the polygonal cross-section shell structures.

Analysis of Deformation and Stress Generated by Repair Welding and Its Accuracy (보수용접시 발생하는 변형 및 응력의 해석 및 정도)

  • Chang Kyong-Ho;Lee Sang-Hyong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.4
    • /
    • pp.365-374
    • /
    • 2004
  • Steel bridges, which have been damaged by load and corrosion, need repair or strengthening. That is a cause of decreasing the durability of structure. In order to solve these problems, welding repair and strengthening methods can be considered. In general, cutting and welding procedure is carried out during the repair welding. Therefore, the investigation of the behavior of residual stress and deformation generated by cutting and welding is very important for safety of structure. Residual stress and deformation produced by gas cutting and arc welding were analyzed using 2D and 3D thermal elasto-plastic FEM. According to the results, the magnitude of temperature was analyzed by 2D-FEM is smaller than that was analyzed using the 3D-FEM at the start and end edge of flange. And the magnitude and distribution of residual stress of perpendicular direction of the cutting line and welding line was analyzed by the 2D-FEM was similar to that was analyzed by 3D-FEM. Therefore, it is possible to predict cutting and welding residual stress by 2D and 3D FEM.

Analysis of an Actual Slope Failure in the Residual Soil by Suction Stress Based Effective Stress (흡수응력에 기반한 유효응력에 의한 실제 잔류토 사면 붕괴의 해석)

  • Oh, Seboong;Lu, Ning;Park, Young Mog;Lee, Junsuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3C
    • /
    • pp.113-120
    • /
    • 2012
  • An actual slope failure was analyzed in residual soils at Jinju. Due to rainfall infiltration, the safety factor decreases in the unsaturated layers, since the effective stress and shear strength decrease. In this study, the effective stress is based on suction stress using soil water retention curve. Unsaturated properties were evaluated on soil water retention curve, hydraulic conductivity and shear strength with samples from the site. After infiltration analysis of unsaturated flow under the actual rainfall, the distribution of pore water pressure could be calculated in the slope layers. In the stress field of finite elements, an elastic analysis calculated total stress distribution in the layers and also shear stresses on the slip surface using elastic model. On the slip surface, suction stress and effective stress evaluated the shear strength. As a result, the factor of safety was calculated due to rainfall, which could simulate the actual slope failure. In particular, it was found that the suction stress increases and both the effective stress and the shear strength decrease simultaneously on the slip surface.

The evaluation of the effect of residual stress induced in piezoresistor on resistance change ratio distribution (압저항체에서 발생하는 잔류응력이 저항변화율 분포도에 미치는 영향성 평가)

  • Shim J.J.;Han G.J.;Lee S.W.;Lee S.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.790-793
    • /
    • 2005
  • In these days, the piezoresistive material has been applied to various sensors in order to measure the change of physical quantities. But the relationship between the sensitivity of a sensor and the position and size of piezoresistor has rarely been studied. Therefore, this paper was focused on the effect of residual stress induced in piezoresistor on the distribution of resistance change ratio and supposed the feasible position of piezoresistor. The resulting are following; The tensile residual stress in the vicinity of piezoresistor decreased the value of resistance change ratio and could not effect on all the area of diaphragm but local area around the piezoresistor. Also, the piezoresistor in the diaphragm type pressure sensor with boss should fabricate in the edge of boss in order to increase the sensitivity of pressure sensor.

  • PDF

The Finite Element Analysis of the Mandrel Shape's Influence on the Residual Stress Distribution by Cold Expansion Method (형상봉의 모양이 홀확장 잔류응력 분포에 미치는 영향에 대한 유한요소해석)

  • Jang, Jae-Soon;Cho, Myoung-Rae;Yang, Won-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.127-133
    • /
    • 2006
  • Cold expansion method is used to protect a fatigue fracture from fastener hole in the structure and aerospace industry. Cold expansion is that an oversized tapered mandrel goes through the hole and produces a compressive residual stress as well as plastic deformation around the hole. Here, mandrel shapes are one of the factors which are influenced on the residual stress distribution by cold expansion method. This paper, according to mandrel shapes (diameter of mandrel, length of mandrel and length of taper), we are performed a finite element analysis of residual stress distribution by cold expansion method. From this study, it has been found that diameter of mandrel and length of taper are an important factor which was generated a low compressive residual stress surround of fastener hole by cold expansion method.

Analysis of residual stress redistribution of weldment due to cutting (절단에 따른 용접부 잔류응력 재분포 해석)

  • Yang, Seung-Yong;Goo, Byeong-Choon;Choi, Sung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1074-1079
    • /
    • 2003
  • In this paper, we conducted finite element analysis to investigate the residual stress redistributions of weldment due to cutting. To evaluate the effect of the residual stress on the fatigue behavior of weldment, test specimens are commonly cut from the weldment, but the distributions of the residual stress in the cut specimen should be different from those in the original weldment. Our work is to evaluate the difference between the residual stresses before and after weldment-cutting to understand the effect of cutting on the residual stress. Transient heat analysis, elastic-plastic mechanical analysis and element removal technique are used to simulate the welding and cutting procedures on the commercial finite element code ABAQUS.

  • PDF

Analysis of stress and distortion that develop during accelerated cooling of plate (가속냉각시 강판에 발생하는 응력 및 변형에 대한 연구)

  • 김호영;김창영;주웅용;장래웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.952-958
    • /
    • 1988
  • To analyze the nonflatness and residual stress in accelerated cooled plate, a numerical analysis model has been developed. Two factors, i.e. temperature and phase transformation, are considered in calculating the stress distribution that develops during cooling. The plastic strain and plate-buckling, which are often shown in accelerated cooled plate, were determined from this stress. Mean temperature in through thickness direction and temperature difference in width direction are considered in the model to simplify the calculation. The temperature and stress distribution changes caused by phase transformation are involved in terms of the effective specific heat and the effective thermal expansion coefficient. With the model, accelerated cooling of 10mm(t) $^{*}$3000mm(w) plate was simulated. The condition of accelerated cooling was .deg. C/sec from just after hot rolling to 500.deg. C. The initial temperature-difference ratio, .DELTA.Tr, in width direction is an important factor in evaluating the stress distribution. When .DELTA.Tr is 0.08, buckling occurs during cooling and 7kgf/m $m^{2}$ of residual stress develops at the edge of plate. To secure the flatness, .DELTA.Tr should be less than 0.07. Small scaled cooling test was conducted to verify the exactness of the model and the results proved the usefulness of this numerical analysis model.l.

STRESS DISTRIBUTION FOR NITI FILES OF TRIANGULAR BASED AND RECTANGULAR BASED CROSS-SECTIONS USING 3-DIMENSIONAL FINITE ELEMENT ANALYSIS (만곡 근관에서 삼각 혹은 장방형 단면 구조의 니켈-티타늄 파일 응력 분포에 관한 3차원 유한요소 연구)

  • Kim, Hyun-Ju;Lee, Chan-Joo;Kim, Byung-Min;Park, Jeong-Kil;Hur, Bock;Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • The purpose of this study was to compare the stress distributions of NiTi rotary instruments based on their cross-sectional geometries of triangular shape-based cross-sectional design, S-shaped cross-sectional design and modified rectangular shape-based one using 3D FE models. NiTi rotary files of S-shaped and modified rectangular design of cross-section such as Mtwo or NRT showed larger stress change while file rotation during simulated shaping. The stress of files with rectangular cross-section design such as Mtwo, NRT was distributed as an intermittent pattern along the long axis of file. On the other hand, the stress of files with triangular cross-section design was distributed continuously. When the residual stresses which could increase the risk of file fatigue fracture were analyzed after their withdrawal. the NRT and Mtwo model also presented higher residual stresses. From this result, it can be inferred that S-shaped and modified rectangular shape-based files were more susceptible to file fracture than the files having triangular shape-based one.