• Title/Summary/Keyword: 잔류응력 거동

Search Result 250, Processing Time 0.024 seconds

A Study on Crack Retardation Behavior by Single Overload (단일 과대하중에 의한 균열지연거동에 관한 연구)

  • 송삼홍;권윤기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.451-462
    • /
    • 1995
  • Single overload tests performed to examine the crack retardation behavior for the specimen thickness and overload ratios. Delayed crack length was tend to increase in small thickness and big overload ratio but was difference between delayed crack length and plastic zone size that expected in specimen thickness. So retardation behavior that estimated in plastic zone size, was not sufficient. Crack tip branching and striation distribution, secondary mechanisms that effected in retardation behavior, was examined by experiment and finite element analysis. Crack tip branching was affected by micro structure, and appeared the more complicatedly according to increasing damage by overload and decreasing crack driving force in base line stress level. And crack tip branching the branching angle decreased crack driving force in the crack tip. And a characteristic of the fractography on retardation zone was that striation distribution did not appear due to decreased crack driving force.

An Analysis of the Fatigue Crack Opening Behaviour in the Welding Residual Stress Field by the Finite Element Method (압축잔류응력장을 전파하는 피로균열의 개구거동의 유한요소법을 이용한 해석적 검토)

  • 박응준;김응준;유승현
    • Journal of Welding and Joining
    • /
    • v.21 no.6
    • /
    • pp.77-83
    • /
    • 2003
  • The finite element analysis was performed for the cracks existing in residual stress fields in order to investigate the effects of configuration of residual stress distribution to the fatigue crack opening behaviour. And the variation of stress distributions adjacent to the crack caused by uploading was examined. The finite element model with contact elements for the crack plane and plane stress elements for the base material and the analytical method based on the superposition principle to estimate crack opening behaviour and the stress distribution adjacent to the crack subjected to uploading were used. The results of the analysis showed that crack opening behaviors and variations of stress distribution caused by uploading were changed depending on the configuration of residual stress distribution. When the crack existed in the region of compressive residual stress and the configuration of compressive residual stress distribution were inclined, a partial crack opening just behind of a crack tip occurred during uploading. Based on the above results, it was clarified that the crack opening behaviour in the residual stress field could be predicted accurately by the finite element analysis using these analytical method and model.

A Proposal of an Analytical Method for Estimating the Opening Behaviour of Tip-Closed Crack in Compressive Residual Stress by Finite Element Method (압축잔류응력에 의하여 선단부가 닫힌 균열의 개구거동에 대한 유한요소법에 의한 해석방법의 제안)

  • 김응준;박응준;유승현
    • Journal of Welding and Joining
    • /
    • v.21 no.6
    • /
    • pp.71-76
    • /
    • 2003
  • For the purpose of clarifying the influence of welding residual stress to the fatigue crack propagations behaviour, an analytical investigation based on finite element method is performed to examine the opening behaviour of tip-closed crack in the compressive residual stress. A finite element model comprised of contact elements for the crack plane and plane stress elements for the base material is used to evaluate crack opening stress of the crack existing in the residual stress field. Also an analytical method based on the superposition principle to estimate the length of opened part of tip closed crack and the stress distribution adjacent to the crack during uploading is applied to the finite element model. The software for the analysis is ABAQUS, which is a general purpose finite element package. The results show that stresses distributed on the crack surfaces are reduced and approached to zero as the applied stresses are increased up to crack tip opening stress and no mechanical discontinuity is found at the boundary of contact elements and plane stress elements. It is verified that the opening behavior of the fatigue crack in the residual stress can be predicted by finite element method with the proposed analytical method.

Prediction of the Torque Capacity for Tubular Adhesive Joints with Composite Adherends (복합재료 접착체를 가지는 튜브형 접합부의 토크전달능력 예측)

  • Oh, Je-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1543-1550
    • /
    • 2006
  • Since the performance of joints usually determines the structural efficiency of composite structures, an extensive knowledge of the behavior of adhesive joints and the related effect on joint strength is essential for design purposes. In this study, the torque capacity of adhesive joints was predicted using the combined thermal and mechanical analyses when the adherend was a composite tube. A finite element analysis was performed to evaluate residual thermal stresses developed in the joint, and mechanical s stresses in the adhesive were calculated including both the nonlinear adhesive behavior and the behavior of composite tubes. Three different joint failure modes were considered to predict joint failure: interfacial failure, adhesive bulk failure, and adherend failure. The influence of the composite adherend stacking angle on the residual thermal stresses was investigated, and how the residual thermal stresses affect the joint strength was also discussed. Finally, the predicted results were compared with experimental results available in literature.

Fracture Behavior of Aged 15Cr-5Ni Stainless Steel (15Cr-5Ni 스테인리스강의 파괴 거동)

  • Chu, M.C.;Saito, K.;Tubota, M.;Ando, K.
    • Journal of Power System Engineering
    • /
    • v.6 no.1
    • /
    • pp.61-67
    • /
    • 2002
  • 15Cr-5Ni 석출강화 스테인리스강 3종류의 피로균열 발생과 성장 특성 및 파괴인성에 대하여 노치함수로서 연구하였다. 3종류강의 열처리 조건은 $482\;^{\circ}C,\;579\;^{\circ}C$$621\;^{\circ}C$이다. $621\;^{\circ}C$에서 4시간동안 열처리한 시험편 C는 약 $280\;MPa\;\sqrt{m}$의 가장 높은 파괴인성을 보였으며, 3종류에서 피로균열 성장이 가장 늦었다. $482\;^{\circ}C$에서 1시간 열처리한 시험편 A에서, 피로균열발생한계, ${\Delta}k{\rho}$, 는 노치반경0.3 mm에서 약 $280\;MPa\;\sqrt{m}$의 가장 높은 값을 보였다. 시험편 A는 시험편 B와 C보다 피로균열 성장이 빨랐지만, 피로균열 발생이 늦었다. 예 하중에 의한 노치선단의 압축잔류응력은 노치 시험편의 피로강도 향상에 유용한 방법이었다.

  • PDF

An Estimation of Panel Deflection at Engine Room Upper Deck for the Ship Under Construction (건조중인 선박에서의 기관실 상갑판 판부재의 처짐 예측)

  • Juh-H. Ham;Ul-N. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.3
    • /
    • pp.119-128
    • /
    • 1994
  • Deflection estimation at engine room upper deck panel is performed for the actual ship structure. These deflection behaviours are basically investigated from not only the data based on the full series results of nonlinear analysis using Incremental Galerkin's Method but also actual deflection data measured from damaged ship under construction in dry dock. The effects of residual stress, initial deflection and static loading are also included. The computed estimation results of upper deck plate panel including theme effects are shown that upper deck platings of new ship expected less deflection magnitude than damaged ship.

  • PDF

Structural Performance on the Self-centering Connections with Different Conditions of PT Strands (긴장재 적용조건에 따른 셀프센터링 접합부의 구조성능에 관한 연구)

  • Jung, Mi Jin;Yoon, Sung Kee
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.1
    • /
    • pp.73-80
    • /
    • 2017
  • In this study, cyclic loading analysis was conducted in order to understand the behavior of self-centering connections based on the number of PT(posttensioning) strands and initial posttensioning force. The initial posttensioning force needs to be above the yield moment of an angle for obtaining noticeable self-centering effect and it is proper that decompression moment ratio needs to be below 0.35 to minimize the residual displacement of major elements. As the number of PT strands increased, self-centering capacity also improved since initial posttensiong force in each PT strand has been decreased. It is also appropriate that initial posttensiong force needs to be less than or equal to 75% of yield strength of PT strands.

An Experimental Study on Fatigue Behavior in Welded SM45C Steel Rod (SM45C 환봉 용접재의 피로거동에 관한 실험적 연구)

  • Lee, Yong-Bok;Jung, Jae-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.6
    • /
    • pp.519-525
    • /
    • 2008
  • For this study, SM45C steel rods using generally for power transmission shafts and machine components was selected and welded by butt-GMAW method. And then it was studied about estimation of fatigue strength and the region of infinite life by Haigh diagram using Goodman's equation. Fatigue strength in weld zone presents highly in order of the boundary between deposited metal zone and heat affected zone, deposited metal zone, heat affected zone. This result agrees with distribution of hardness in weld zone. Fatigue strength in base metal zone presents highly compared with weld zone in low cycles between $10^4$ cycles and $10^6$cycles, but it presents the lowest fatigue strength on the order of heat affected zone in the vicinity of $10^6$cycles. It is the result that the first high compressive residual stress distributed by drawing process of the steel rods is released and the base metal is softened by alternating stresses. The region of infinite life by Haigh diagram presents highly in order of the boundary between deposited metal zone and heat affected zone, deposited metal zone, heat affected zone. From this results, it is demanded that the stress for safety design of machine components using SM45C butt-welded steel rods must be selected in the region of the lowest infinite life of heat affected zone.

A Study on Shot peening on Fatigue Crack Growth Property for Marine Structural Steel (해양구조용강의 피로거동에 관한 연구)

  • Park, Kyoung-Dong;Ha, Kyoung-Jun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.313-318
    • /
    • 2003
  • The development of new materials with light weight and high strength has become vital to the machinery, aircraft and auto industries. However, there are a lot of problems with developing such materials that require expensive tools, and a great deal of time and effort. Therefore, the improvement of fatigue strength and fatigue life are mainly focused on by adopting residual stress(in this thesis). The compressive residual stress was imposed on the surface according to each shot velocity(57, 70, 83, 96 m/sec) based on Shot-peening, which is the method of improving fatigue lift: and strength. By using the methods mentioned above, I arrived at the following conclusions 1. The fatigue crack growth rate(da/dN) of the Shot-peened material was lower than that of the Un-peened material. And in stage I, ${\Delta}K_{th}$, the threshold stress intensity factor, of the shot-peen processed material is high in critical parts unlike the Un-peened material. Also m, fatigue crack growth exponent and number of cycle of the Shot-peened material was higher than that of the Un-peened material. That is concluded from effect of da/dN. 2. Fatigue life shows more improvement in the Shot-peened material than in the Un-peened material. And compressive residual stress of surface on the Shot-peen processed operate resistance force of fatigue crack propagation.

  • PDF

Prediction for Liquefaction and Lateral Flow on Non-plastic Silt (비소성실트지반의 액상화 및 측방유동량 예측)

  • Yang, Taeseon;Song, Byungwoong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.11
    • /
    • pp.65-70
    • /
    • 2011
  • It is well known all much information for evaluation on possibility of liquefaction and lateral flow for sand over the world. Recently, it is started to be known that liquefaction happens on non-plastic silt, too. But cyclic and post-cyclic characteristics for non-plastic silt is a few familiar to the world. Specially, it is not aware of the estimating method for lateral flow on non-plastic silt. The main purpose in this paper is to propose the evaluation for liquefaction and lateral flow on non-plastic silt. The method used in this research is that possibility for liquefaction on non-plastic silt was evaluated with cyclic direct simple shear test, and then residental strength was estimated with static shear test. Through the test results liquefaction on non-plastic silt is well not happened but strength decreases rapidly with increasing shear stress. With the proposed method it can be evaluated possibility of liquefaction and propose lateral flow.