• Title/Summary/Keyword: 자화 강조 영상

Search Result 34, Processing Time 0.024 seconds

Evaluation of Magnetization Transfer Ratio Imaging by Phase Sensitive Method in Knee Joint (슬관절 부위에서 자화전이 위상감도법에 의한 자화전이율 영상 평가)

  • Yoon, Moon-Hyun;Seung, Mi-Sook;Choe, Bo-Young
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.269-275
    • /
    • 2008
  • Although MR imaging is generally applicable to depict knee joint deterioration it, is sometimes occurred to mis-read and mis-diagnose the common knee joint diseases. In this study, we employed magnetization transfer ratio (MTR) method to improve the diagnosis of the various knee joint diseases. Spin-echo (SE) T2-weighted images (TR/TE 3,400-3,500/90-100 ms) were obtained in seven cases of knee joint deterioration, FSE T2-weighted images (TR/TE 4,500-5,000/100-108 ms) were obtained in seven cases of knee joint deterioration, gradient-echo (GRE) T2-weighted images (TR/TE 9/4.56/$50^{\circ}$ flip angle, NEX 1) were obtained in 3 cases of knee joint deterioration, In six cases of knee joint deterioration, fat suppression was performed using a T2-weighted short T1/tau inverse recovery (STIR) sequence (TR/TE =2,894-3,215 ms/70 ms, NEX 3, ETL 9). Calculation of MTR for individual pixels was performed on registration of unsaturated and saturated images. After processing to make MTR images, the images were displayed in gray color. For improving diagnosis, three-dimensional isotropic volume images, the MR tristimulus color mapping and the MTR map was employed. MTR images showed diagnostic images quality to assess the patients' pathologies. The intensity difference between MTR images and conventional MRI was seen on the color bar. The profile graph on MTR imaging effect showed a quantitative measure of the relative decrease in signal intensity due to the MT pulse. To diagnose the pathologies of the knee joint, the profile graph data was shown on the image as a small cross. The present study indicated that MTR images in the knee joint were feasible. Investigation of physical change on MTR imaging enables to provide us more insight in the physical and technical basis of MTR imaging. MTR images could be useful for rapid assessment of diseases that we examine unambiguous contrast in MT images of knee disorder patients.

  • PDF

Clinical Applications of Neuroimaging with Susceptibility Weighted Imaging: Review Article (SWI의 신경영상분야의 임상적 이용)

  • Roh, Keuntak;Kang, Hyunkoo;Kim, Injoong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.4
    • /
    • pp.290-302
    • /
    • 2014
  • Purpose : Susceptibility-weighted magnetic resonance (MR) sequence is three-dimensional (3D), spoiled gradient-echo pulse sequences that provide a high sensitivity for the detection of blood degradation products, calcifications, and iron deposits. This pictorial review is aimed at illustrating and discussing its main clinical applications. Materials and Methods: SWI is based on high-resolution, 3D, fully velocity-compensated gradient-echo sequences using both magnitude and phase images. To enhance the visibility of the venous structures, the magnitude images are multiplied with a phase mask generated from the filtered phase data, which are displayed at best after post-processing of the 3D dataset with the minimal intensity projection algorithm. A total of 200 patients underwent MR examinations that included SWI on a 3 tesla MR imager were enrolled. Results: SWI is very useful in detecting multiple brain disorders. Among the 200 patients, 80 showed developmental venous anomaly, 22 showed cavernous malformation, 12 showed calcifications in various conditions, 21 showed cerebrovascular accident with susceptibility vessel sign or microbleeds, 52 showed brain tumors, 2 showed diffuse axonal injury, 3 showed arteriovenous malformation, 5 showed dural arteriovenous fistula, 1 showed moyamoya disease, and 2 showed Parkinson's disease. Conclusion: SWI is useful in detecting occult low flow vascular lesions, calcification and microbleed and characterising diverse brain disorders.

Susceptibility-Weighted MR Imaging for the Detection of Developmental Venous Anomaly: Comparison with T2 and FLAIR Imaging (자화율강조 MR영상을 이용한 뇌정맥 기형의 진단: T2강조영상과 FLAIR영상과의 비교)

  • Cho, Soo Bueum;Choi, Dae Seob;Ryu, Hyeon Gyu;Shin, Hwa Seon;Kim, Ji-Eun;Choi, Hye Young;Park, Mi Jung;Choi, Ho Cheol;Son, Seungnam
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.3
    • /
    • pp.200-207
    • /
    • 2014
  • Purpose : We evaluated the diagnostic value of susceptibility-weighted imaging (SWI) for the detection of developmental venous anomaly (DVA). Materials and Methods: Retrospective review of 1068 brain MR examinations found 28 DVAs in 28 patients (2.6%) on contrast-enhanced T1-weighted images. SWI, T2, and FLAIR images of 28 patients with DVA and 28 sex- and age-matched control patients without DVA were analyzed by blinded readers on each type of sequences. All images were independently reviewed by two radiologists who were blinded to other MR imaging finding. In cases of discrepancy, two reviewers reached a consensus later. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of each MR sequence for the detection of DVA were determined. Statistical analysis was performed by using the Mcnemar test. The significance level was p < 0.05. Results: The sensitivity, specificity, PPV, and NPV of SWI for the detection of DVA were 85.7%, 92.9%, 92.3%, and 86.7%, respectively. T2 and FLAIR images showed sensitivity of 35.7% and 35.7%, specificity of 92.9% and 96.4%, PPV of 83.3% and 90.9%, and NPV of 59.1% and 60.0%, respectively. On SWI, the sensitivity and NPV for the detection of DVAs were significantly higher than those of T2 and FLAIR images (p < 0.05). Conclusion: SWI was sensitive and specific for the detection of DVA.

Gaussian Filtering Effects on Brain Tissue-masked Susceptibility Weighted Images to Optimize Voxel-based Analysis (화소 분석의 최적화를 위해 자화감수성 영상에 나타난 뇌조직의 가우시안 필터 효과 연구)

  • Hwang, Eo-Jin;Kim, Min-Ji;Jahng, Geon-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.17 no.4
    • /
    • pp.275-285
    • /
    • 2013
  • Purpose : The objective of this study was to investigate effects of different smoothing kernel sizes on brain tissue-masked susceptibility-weighted images (SWI) obtained from normal elderly subjects using voxel-based analyses. Materials and Methods: Twenty healthy human volunteers (mean $age{\pm}SD$ = $67.8{\pm}6.09$ years, 14 females and 6 males) were studied after informed consent. A fully first-order flow-compensated three-dimensional (3D) gradient-echo sequence ran to obtain axial magnitude and phase images to generate SWI data. In addition, sagittal 3D T1-weighted images were acquired with the magnetization-prepared rapid acquisition of gradient-echo sequence for brain tissue segmentation and imaging registration. Both paramagnetically (PSWI) and diamagnetically (NSWI) phase-masked SWI data were obtained with masking out non-brain tissues. Finally, both tissue-masked PSWI and NSWI data were smoothed using different smoothing kernel sizes that were isotropic 0, 2, 4, and 8 mm Gaussian kernels. The voxel-based comparisons were performed using a paired t-test between PSWI and NSWI for each smoothing kernel size. Results: The significance of comparisons increased with increasing smoothing kernel sizes. Signals from NSWI were greater than those from PSWI. The smoothing kernel size of four was optimal to use voxel-based comparisons. The bilaterally different areas were found on multiple brain regions. Conclusion: The paramagnetic (positive) phase mask led to reduce signals from high susceptibility areas. To minimize partial volume effects and contributions of large vessels, the voxel-based analysis on SWI with masked non-brain components should be utilized.

Phase Image of Susceptibility Weighted Image Using High Pass Filter Improved Uniformity (위상영상 획득 시 영상의 균일도 향상을 위한 high pass filter의 적용)

  • Lee, Ho-Beom;Choi, Kwan-Woo;Son, Soon-Yong;Na, Sa-Ra;Lee, Joo-Ah;Min, Jung-Whan;Kim, Hyun-Soo;Ma, Sang-Chull;Jeong, Yeon-Jae;Jeong, Yeon-Gyu;Yoo, Beong-Gyu;Lee, Jong-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6702-6709
    • /
    • 2014
  • In this study, a susceptibility weighted image (SWI) showed a wrapped phase and a non-uniformity of the rapid susceptibility difference. Consequently, the bandwidth limits at low frequency were improved by applying HPF. From November 2013 to March 2014, a three-dimensional SWI was obtained from patients and compared with the existing images and HPF phase images. The maximum and minimum signal intensity differences and non-uniformity were analyzed. As a result, a high pass filter before and after applying the maximum and minimum of the signal intensity difference was decreased by 274.16% (498.98), and the non-uniformity was decreased by 439.55% (19.83). After applying the HPF, a comparison with the existing phase images revealed the HPF phase images to have high signal and image uniformity of the SWI image. A high pass filter method can effectively remove the non-uniformity and improve the overall image quality.

Clinical Utility of Prominent Hypointense Signals in the Draining Veins on Susceptibility-Weighted Imaging in Acute Cerebral Infarct: As a Marker of Penumbra and a Predictor of Prognosis (급성 뇌경색에서 자화율강조영상에서 보이는 현저한 유출정맥 저신호 강도의 임상적 유용성: Penumbra 및 예후 예측인자로서 가능성)

  • Lee, Hyun Sil;Ahn, Kook Jin;Choi, Hyun Seok;Jang, Jin Hee;Jung, So Lyung;Kim, Bum Soo;Yang, Dong Won
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.4
    • /
    • pp.332-340
    • /
    • 2014
  • Purpose : A relative increase in deoxyhemoglobin levels in hypoperfused tissue can cause prominent hypointense signals in the draining veins (PHSV) within areas of impaired perfusion in susceptibility-weighted imaging (SWI). The purpose of this study is to evaluate the usefulness of SWI in patients with acute cerebral infarction by evaluating PHSV within areas of impaired perfusion and to investigate the usefulness of PHSV in predicting prognosis of cerebral infarction. Materials and Methods: In 18 patients with acute cerebral infarction who underwent brain MRI with diffusion-weighted imaging and SWI and follow-up brain MRI or CT, we reviewed the presence and location of the PHSV within and adjacent to areas of cerebral infarction qualitatively and measured the signal intensity difference ratio of PHSVs to contralateral normal appearing cortical veins quantitatively on SWI. The relationship between the presence of the PHSV and the change in the extent of infarction in follow-up images was analyzed. Results: Of the 18 patients, 10 patients showed progression of the infarction, and 8 patients showed little change on follow- up imaging. On SWI, of the 10 patients with progression 9 patients showed peripheral PHSV and the newly developed infarctions corresponded well to area with peripheral PHSV on initial SWI. Only one patient without peripheral PHSV showed progression of the infarct. The patients with infarction progression revealed significantly higher presence of peripheral PHSV (p=0.0001) and higher mean signal intensity difference ratio (p=0.006) comparing to the patients with little change. Conclusion: SWI can demonstrate a peripheral PHSV as a marker of penumbra and with this finding we can predict the prognosis of acute infarction. The signal intensity difference of PHSV to brain tissue on SWI can be used in predicting prognosis of acute cerebral infarction.

Effect of Gd-DTPA on Diffusion in Canine Brain with Hyperacute Stroke (초급성 뇌경색을 일으킨 개에서 Gd-조영제의 주입이 뇌의 확산에 미치는 영향)

  • 김범수;정소령;신경섭
    • Investigative Magnetic Resonance Imaging
    • /
    • v.6 no.2
    • /
    • pp.158-165
    • /
    • 2002
  • Purpose : To evaluate the effect of Gd-DTPA on signal intensity of diffusion-weighted magnetic resonance(MR) image and apparent diffuse coefficient (ADC) in dog brain with hype racute stroke. Materials and methods : Experimental canine model of hyperacute cerebral infarction was made by selective intraarterial embolization with particulate embolic material. Diffusion-weighted MR imaging was performed in five dogs at 1 hour after the embolization of internal carotid artery. After intravenous bolus injection of Gd- DTPA, additional 11 diffusion-weighted MR images were serially obtained from 2 minutes to 90 minutes after injection in each dog. The author evaluated findings of hyperacute cerebral infarction on diffusion-weighted MR imaging, and calculated mean signal intensity and mean ADC in infarcted region and contralateral normal region. Statistical analysis of mean signal intensity, mean ADC and contrast-noise ratio before and after Gd-DTPA injection was performed. Results : Hyperacute cerebral infarction developed in all five dogs on diffusion-weighted MR images obtained 1 hour after embolization. The area of hyperacute infarction had steady increase in signal intensity on diffusion-weighted MR image and decrease in ADC. In normal perfusion area, decrease in signal intensity was observed at 2 minutes the Gd-DTPA injection, whereas ADC did not changed. Conclusion : Intravenous injection of Gd-DTPA had no influence on ADC in both hyperacute infarction and normally perfused are a, but caused initial transient signal reduction in normally perfused area on diffusion-weighted MR image due to susceptibility effect of Gd-DTPA. It is important to calculate ADC in evaluating the effect of diffusion after injection of Gd-DTPA.

  • PDF

Voxel-based Investigations of Phase Mask Effects on Susceptibility Weighted Images (화소 간 분석을 이용하여 자화율 가중 영상(SWI)에 나타난 위상 마스킹의 효과 분석)

  • Hwang, Eo-Jin;Kim, Min-Ji;Kim, Hyug-Gi;Ryu, Chang-Woo;Jahng, Geon-Ho
    • Progress in Medical Physics
    • /
    • v.24 no.1
    • /
    • pp.25-34
    • /
    • 2013
  • To investigate effects of phase mask on susceptibility-weighted images (SWI) using voxel-based analyses in normal elderly subjects. A three-dimensional (3D) gradient echo sequence ran to obtain SWIs in 20 healthy elderly subjects. SWIs with two (SWI2) and four (SWI4) phase multiplications were achieved with positive (PSWI) and negative (NSWI) phase masks to investigate phase mask effects. The voxel-based comparisons were performed using paired t-tests between PSWI and NSWI and between SWI2 and SWI4. Differences of signal intensities between magnitude images and SWI4 were larger than those between magnitude images and SWI2s. Differences of signal intensities between magnitude images and PSWIs were larger than those between magnitude images and NSWIs. Moreover, the signal intensities from NSWI2s and NSWI4s were greater than those from PSWI2s and PSWI4s, respectively. More differences of signal intensities between NSWI4 and PSWI4s were found than those between NSWI2s and PSWI2s in the whole brain images. The voxel-based analyses of SWI could be beneficial to investigate susceptibility differences on the entire brain areas. The phase masking method could be chosen to enhance brain tissue contrast rather than to enhance venous blood vessels. Therefore, it is recommended to apply voxel-based analyses of SWI to investigate clinical applications.

Development of the Line Scan Diffusion Weighted Imaging at Low Tesla Magnetic Resonance Imaging System (저자장 자기공명영상시스템에서 선주사확산강조영상기법 개발)

  • Hong, Cheol-Pyo;Lee, Dong-Hoon;Lee, Do-Wan;Lee, Man-Woo;Paek, Mun-Young;Han, Bong-Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.2 no.2
    • /
    • pp.31-38
    • /
    • 2008
  • Line scan diffusion weighted imaging (LSDI) pulse sequence for 0.32 T magnetic resonance imaging (MRI) system was developed. In the LSDI pulse sequence, the imaging volume is formed by the intersection of the two perpendicular planes selected by the two slice-selective $\pi$/2-pulse and $\pi$-pulse and two diffusion sensitizing gradients placed on the both side of the refocusing $\pi$-pulse and the standard frequency encoding readout was followed. Since the maximum gradient amplitude for the MR system was 15 mT/m the maximum b value was $301.50s/mm^2$. Using the developed LSDI pulse sequence, the diffusion weighted images for the aqueous NaCl solution phantom and triacylglycerol solution phantom calculated from the line scan diffusion weighted images gives the same results within the standard error range (mean diffusivities = $963.90{\pm}79.83({\times}10^{-6}mm^2/s)$ at 0.32 T, $956.77{\pm}4.12({\times}10^{-6}mm^2/s)$ at 1.5 T) and the LSDI images were insensitive to the magnetic susceptibility difference and chemical shift.

  • PDF

Susceptibility Weighted Image for Stem Cell Tracking in Rat Photothrombotic Infarction (흰쥐 광 혈전 뇌경색 모델에서 줄기세포 추적을 위한 자화강조영상)

  • Ha, Bon-Chul;Lim, Cheong-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.8
    • /
    • pp.249-256
    • /
    • 2010
  • To the detect of SPIO-labelled hMSC, in vitro study on various cell concentration and in vivo molecular magnetic resonance imaging(MRI) technique using T2, $T2^*$ and SWI are compared with pathology. Cell concentration was $1.56{\times}10^4$, $3.13{\times}10^4$, $6.25{\times}10^4$, $1.25{\times}10^5$, $2.5{\times}10^5$, $5{\times}10^5\;cells/m{\ell}$ and for control $5{\times}10^5\cells/m{\ell}$. MRI technique using T2, $T^2$ and SWI. Photothrombotic infarction was located 2.5mm from bregma right, posterior. Cell injected through the tail vein of rat for 8 rats. MRI performed pre injection and post injection of 1, 3, 7 and 14days and sacrifice for pathology. MRI analysed on quantitatively. In vitro result, SWI was highest CNR as compared with $T2^*WI$, T2WI and $2.5{\times}10^5\;cells/m{\ell}$ cell concentration. In vivo result among the T2WI, $T2^WI$, SWI, T2WI is highest CNR between normal and infarction. CNR in normal-SPIO and infarction-SPIO is high score in SWI. Therefore, T2WI is good distinguish between normal and infarction, SWI are well detect SPIO-labelled hMSC from normal and infarction. Nowaday, SWI are mostly used on hemorrhage, calcification etc. in clinically, but for the future, stem cell therapy is commonly application at all disease which is good observing tool for SPIO-labelled stem cells.