DOI QR코드

DOI QR Code

Clinical Utility of Prominent Hypointense Signals in the Draining Veins on Susceptibility-Weighted Imaging in Acute Cerebral Infarct: As a Marker of Penumbra and a Predictor of Prognosis

급성 뇌경색에서 자화율강조영상에서 보이는 현저한 유출정맥 저신호 강도의 임상적 유용성: Penumbra 및 예후 예측인자로서 가능성

  • Lee, Hyun Sil (Department of Radiology, Seoul St. Mary's Hospital, The Catholic University of Korea) ;
  • Ahn, Kook Jin (Department of Radiology, Seoul St. Mary's Hospital, The Catholic University of Korea) ;
  • Choi, Hyun Seok (Department of Radiology, Seoul St. Mary's Hospital, The Catholic University of Korea) ;
  • Jang, Jin Hee (Department of Radiology, Seoul St. Mary's Hospital, The Catholic University of Korea) ;
  • Jung, So Lyung (Department of Radiology, Seoul St. Mary's Hospital, The Catholic University of Korea) ;
  • Kim, Bum Soo (Department of Radiology, Seoul St. Mary's Hospital, The Catholic University of Korea) ;
  • Yang, Dong Won (Department of Neurology, Seoul St. Mary's Hospital, The Catholic University of Korea)
  • 이현실 (가톨릭의과대학 서울성모병원 영상의학과) ;
  • 안국진 (가톨릭의과대학 서울성모병원 영상의학과) ;
  • 최현석 (가톨릭의과대학 서울성모병원 영상의학과) ;
  • 장진희 (가톨릭의과대학 서울성모병원 영상의학과) ;
  • 정소령 (가톨릭의과대학 서울성모병원 영상의학과) ;
  • 김범수 (가톨릭의과대학 서울성모병원 영상의학과) ;
  • 양동원 (가톨릭의과대학 서울성모병원 신경과)
  • Received : 2014.11.13
  • Accepted : 2014.11.23
  • Published : 2014.12.31

Abstract

Purpose : A relative increase in deoxyhemoglobin levels in hypoperfused tissue can cause prominent hypointense signals in the draining veins (PHSV) within areas of impaired perfusion in susceptibility-weighted imaging (SWI). The purpose of this study is to evaluate the usefulness of SWI in patients with acute cerebral infarction by evaluating PHSV within areas of impaired perfusion and to investigate the usefulness of PHSV in predicting prognosis of cerebral infarction. Materials and Methods: In 18 patients with acute cerebral infarction who underwent brain MRI with diffusion-weighted imaging and SWI and follow-up brain MRI or CT, we reviewed the presence and location of the PHSV within and adjacent to areas of cerebral infarction qualitatively and measured the signal intensity difference ratio of PHSVs to contralateral normal appearing cortical veins quantitatively on SWI. The relationship between the presence of the PHSV and the change in the extent of infarction in follow-up images was analyzed. Results: Of the 18 patients, 10 patients showed progression of the infarction, and 8 patients showed little change on follow- up imaging. On SWI, of the 10 patients with progression 9 patients showed peripheral PHSV and the newly developed infarctions corresponded well to area with peripheral PHSV on initial SWI. Only one patient without peripheral PHSV showed progression of the infarct. The patients with infarction progression revealed significantly higher presence of peripheral PHSV (p=0.0001) and higher mean signal intensity difference ratio (p=0.006) comparing to the patients with little change. Conclusion: SWI can demonstrate a peripheral PHSV as a marker of penumbra and with this finding we can predict the prognosis of acute infarction. The signal intensity difference of PHSV to brain tissue on SWI can be used in predicting prognosis of acute cerebral infarction.

목적: 급성 뇌경색 환자의 자화율강조영상에서 보이는 관류 손상 부위의 현저한 유출정맥 저신호 강도 (PHSV)의 임상적 유용성을 평가하고자 하였다. 대상과 방법: 확산강조영상과 자화율강조영상을 포함한 뇌 자기공명영상을 시행한 급성 뇌경색 환자에서 추적 단면영상검사가 있는 환자 18명을 대상으로 뇌경색 및 주변부에서 PHSV 유무와 위치를 정성적으로 확인하였다. 자화율강조영상에서 PHSV와 정상 뇌피질 정맥의 신호강도차이 비율을 측정하였고, 주변 PHSV 유무와 추적검사에서 뇌경색 크기 변화의 상관관계를 분석하였다. 결과: 18명의 환자 중 10명의 환자가 추적검사에서 뇌경색이 진행하였고, 8명은 변화가 없었다. 뇌경색이 진행한 10명의 환자 중 9명에서 뇌경색 주변 PHSV가 관찰되었고, 새로 생긴 경색 부위는 초기 자화율강조영상에서 보였던 주변 PHSV 부위와 잘 일치하였다. 경색의 크기가 변화 없는 환자군과 비교하여 경색이 진행한 환자군에서 뇌경색 주변 PHSV의 빈도가 통계적으로 유의하게 높았고 (p=0.0001), 신호강도차이 비율도 유의하게 높았다 (p=0.006). 결론: 자화율강조영상에서 보이는 주변 PHSV는 반음영부 (penumbra)의 지표가 될수 있으며 급성 뇌경색 예후 예측에 이용될 수 있다.

Keywords

References

  1. Haacke EM, Xu Y, Cheng YC, Reichenbach JR. Susceptibility weighted imaging (SWI). Magn Reson Med 2004;52:612-618 https://doi.org/10.1002/mrm.20198
  2. Tong KA, Ashwal S, Obenaus A, Nickerson JP, Kido D, Haacke EM. Susceptibility-weighted MR imaging: a review of clinical applications in children. AJNR Am J Neuroradiol 2008;29:9-17 https://doi.org/10.3174/ajnr.A0786
  3. Santhosh K, Kesavadas C, Thomas B, Gupta AK, Thamburaj K, Kapilamoorthy TR. Susceptibility weighted imaging: a new tool in magnetic resonance imaging of stroke. Clin Radiol 2009;64:74-83 https://doi.org/10.1016/j.crad.2008.04.022
  4. Shen Y, Kou Z, Kreipke CW, Petrov T, Hu J, Haacke EM. In vivo measurement of tissue damage, oxygen saturation changes and blood flow changes after experimental traumatic brain injury in rats using susceptibility weighted imaging. Magn Reson Imaging 2007;25:219-227 https://doi.org/10.1016/j.mri.2006.09.018
  5. Fujima N, Kudo K, Terae S, et al. Spinal arteriovenous malformation: evaluation of change in venous oxygenation with susceptibility-weighted MR imaging after treatment. Radiology 2010;254:891-899 https://doi.org/10.1148/radiol.09090286
  6. Zaitsu Y, Kudo K, Terae S, et al. Mapping of cerebral oxygen extraction fraction changes with susceptibility-weighted phase imaging. Radiology 2011;261:930-936 https://doi.org/10.1148/radiol.11102416
  7. Saunders DE, Clifton AG, Brown MM. Measurement of infarct size using MRI predicts prognosis in middle cerebral artery infarction. Stroke 1995;26:2272-2276 https://doi.org/10.1161/01.STR.26.12.2272
  8. Stone SP, Allder SJ, Gladman JR. Predicting outcome in acute stroke. Br Med Bull 2000;56:486-494 https://doi.org/10.1258/0007142001903139
  9. Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng YC. Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol 2009;30:19-30
  10. Karaarslan E, Ulus S, Kurtuncu M. Susceptibility-weighted imaging in migraine with aura. AJNR Am J Neuroradiol 2011;32:E5-7
  11. Olesen J, Larsen B, Lauritzen M. Focal hyperemia followed by spreading oligemia and impaired activation of rCBF in classic migraine. Ann Neurol 1981;9:344-352 https://doi.org/10.1002/ana.410090406
  12. Mittal S, Wu Z, Neelavalli J, Haacke EM. Susceptibilityweighted imaging: technical aspects and clinical applications, part 2. AJNR Am J Neuroradiol 2009;30:232-252
  13. Alexandrov AV, Black SE, Ehrlich LE, Caldwell CB, Norris JW. Predictors of hemorrhagic transformation occurring spontaneously and on anticoagulants in patients with acute ischemic stroke. Stroke 1997;28:1198-1202 https://doi.org/10.1161/01.STR.28.6.1198
  14. Christoforidis GA, Karakasis C, Mohammad Y, Caragine LP, Yang M, Slivka AP. Predictors of hemorrhage following intraarterial thrombolysis for acute ischemic stroke: the role of pial collateral formation. AJNR Am J Neuroradiol 2009;30:165-170
  15. Lansberg MG, Albers GW, Wijman CA. Symptomatic intracerebral hemorrhage following thrombolytic therapy for acute ischemic stroke: a review of the risk factors. Cerebrovasc Dis 2007;24:1-10
  16. Paciaroni M, Agnelli G, Corea F, et al. Early hemorrhagic transformation of brain infarction: rate, predictive factors, and influence on clinical outcome: results of a prospective multicenter study. Stroke 2008;39:2249-2256 https://doi.org/10.1161/STROKEAHA.107.510321
  17. Kassner A, Roberts TP, Moran B, Silver FL, Mikulis DJ. Recombinant tissue plasminogen activator increases blood-brain barrier disruption in acute ischemic stroke: an MR imaging permeability study. AJNR Am J Neuroradiol 2009;30:1864- 1869 https://doi.org/10.3174/ajnr.A1774
  18. Thornhill RE, Chen S, Rammo W, Mikulis DJ, Kassner A. Contrast-enhanced MR imaging in acute ischemic stroke: T2* measures of blood-brain barrier permeability and their relationship to T1 estimates and hemorrhagic transformation. AJNR Am J Neuroradiol 2010;31:1015-1022 https://doi.org/10.3174/ajnr.A2003
  19. Ogawa S, Lee TM, Nayak AS, Glynn P. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 1990;14:68-78 https://doi.org/10.1002/mrm.1910140108
  20. Forster BB, MacKay AL, Whittall KP, et al. Functional magnetic resonance imaging: the basics of blood-oxygen-level dependent (BOLD) imaging. Can Assoc Radiol J 1998;49:320-329
  21. Powers WJ, Raichle ME. Positron emission tomography and its application to the study of cerebrovascular disease in man. Stroke 1985;16:361-376 https://doi.org/10.1161/01.STR.16.3.361
  22. Yamauchi H, Fukuyama H, Nagahama Y, et al. Evidence of misery perfusion and risk for recurrent stroke in major cerebral arterial occlusive diseases from PET. J Neurol Neurosurg Psychiatry 1996;61:18-25 https://doi.org/10.1136/jnnp.61.1.18
  23. He X, Zhu M, Yablonskiy DA. Validation of oxygen extraction fraction measurement by qBOLD technique. Magn Reson Med 2008;60:882-888 https://doi.org/10.1002/mrm.21719
  24. He X, Yablonskiy DA. Quantitative BOLD: mapping of human cerebral deoxygenated blood volume and oxygen extraction fraction: default state. Magn Reson Med 2007;57:115-126 https://doi.org/10.1002/mrm.21108
  25. An H, Lin W. Cerebral oxygen extraction fraction and cerebral venous blood volume measurements using MRI: effects of magnetic field variation. Magn Reson Med 2002;47:958-966 https://doi.org/10.1002/mrm.10148
  26. Haacke EM, Lai S, Reichenbach JR, et al. In vivo measurement of blood oxygen saturation using magnetic resonance imaging: a direct validation of the blood oxygen level-dependent concept in functional brain imaging. Hum Brain Mapp 1997;5:341-346 https://doi.org/10.1002/(SICI)1097-0193(1997)5:5<341::AID-HBM2>3.0.CO;2-3