기계학습 기반 문서범주화 기법에 있어서 최적의 자질을 구성하는 것이 성능향상에 있어서 중요하다. 본 연구는 학술지 수록 논문의 필수적 구성요소인 저자 제공 키워드와 논문제목을 대상으로 자질확장에 관한 실험을 수행하였다. 자질확장은 기본적으로 선정된 자질에 기반하여 WordNet과 같은 의미기반 사전 도구를 활용하는 것이 일반적이다. 본 연구는 키워드와 논문제목을 대상으로 WordNet 동의어 관계 용어를 활용하여 자질확장을 수행하였으며, 실험 결과 문서범주화 성능이 자질확장을 적용하지 않은 결과와 비교하여 월등히 향상됨을 보여주었다. 이러한 성능향상에 긍정적인 영향을 미치는 요소로 파악된 것은 정제된 자질 기반 및 분류어 기준의 동의어 자질확장이다. 이때 용어의 중의성 해소 적용과 비적용 모두 성능향상에 영향을 미친 것으로 파악되었다. 본 연구의 결과로 키워드와 논문제목을 활용한 분류어 기준 동의어 자질 확장은 문서 범주화 성능향상에 긍정적인 요소라는 것을 제시하였다.
본 논문에서는 최근 급속히 증가하여 사회적 이슈가 되고 있는 SMS 스팸 필터링을 위한 듀얼 SMS 스팸필터링 기법을 제안한다. 지속적으로 증가하고 새롭게 변형되는 SMS 문자 필터링을 위해서는 패턴 및 스팸 단어 사전을 통한 필터링은 많은 수작업을 요구하여 부적합하다. 그리하여 기계 학습을 이용한 자동화 시스템 구축이 요구되고 있으며, 효과적인 기계 학습을 위해서는 자질 선택과 자질의 가중치 책정 방법이 중요하다. 하지만 SMS 문자 특성상 문장들이 짧기 때문에 출현하는 자질의 수가 적어 분류의 어려움을 겪게 된다. 이 같은 문제를 개선하기 위하여 본 논문에서는 슬라이딩 윈도우 기반 N-gram 확장을 통해 자질을 확장하고, 확장된 자질로 그래프를 구축하여 얕은 구조적 특징을 표현한다. 학습 데이터에 출현한 N-gram 자질을 정점(Vertex)으로, 자질의 출현 빈도를 그래프의 간선(Edge)의 가중치로 설정하여 햄(HAM)과 스팸(SPAM) 그래프를 각각 구성한다. 이렇게 구성된 그래프를 바탕으로 노드의 중요도와 간선의 가중치를 활용하여 최종적인 자질의 가중치를 결정한다. 입력 문자가 도착하면 스팸과 햄의 그래프를 각각 이용하여 입력 문자의 2개의 자질 벡터(Vector)를 생성한다. 생성된 자질 벡터를 지지 벡터 기계(Support Vector Machine)를 이용하여 각 SVM 확률 값(Probability Score)을 얻어 스팸 여부를 결정한다. 3가지의 실험환경에서 바이그램 자질과 이진 가중치를 사용한 기본 시스템보다 F1-Score의 약 최대 2.7%, 최소 0.5%까지 향상되었으며, 결과적으로 평균 약 1.35%의 성능 향상을 얻을 수 있었다.
본 논문에서는 한국어 감정 분류에 기반이 되는 감정 자질 추출의 효과적인 추출 방법을 제안하고 평가하여, 그 유용성을 보인다. 한국어 감정 자질 추출은 감정을 지닌 대표적인 어휘로부터 시작하여 확장할 수 있으며, 이와 같이 추출된 감정 자질들은 문서의 감정을 분류하는데 중요한 역할을 한다. 문서 감정 분류에 핵심이 되는 감정 자질의 추출을 위해서는 영어 단어 시소러스 유의어 정보를 이용하여 자질들을 확장하고, 영한사전을 이용하여 확장된 자질들을 번역하여 감정 자질들을 추출하였다. 추출된 한국어 감정 자질들을 평가하기 위하여, 이진 분류 기법인 지지 벡터 기계(Support Vector Machine)를 사용해서 한국어 감정 자질로 표현된 입력문서의 감정을 분류하였다. 실험 결과, 추출된 감정 자질을 사용한 경우가 일반적인 정보 검색에서 사용하는 내용어(Content Word) 기반의 자질을 사용한 경우보다 약 14.1%의 성능 향상을 보였다.
이 논문에서는 용어 클러스터링의 성능에 직접적인 영향을 주는 자질 확장에 따른 시스템의 성능 변화를 보았다. 객관적인 성능 비교를 위하여 용어 클러스터링 결과와 한국어 의미 계층망에서 추출한 클러스터를 비교하였다. 실험 결과, 용어의 뜻 풀이말을 자질로 사용한 경우보다 자질을 확장한 방법(Bigram, Case)이 성능이 좋게 나왔으며, 자질확장 시에 사용되는 말뭉치의 추출방법에 따라 다른 성능을 보였는데, 단순히 Bigram 정보를 사용하여 확장한 것 보다는 동사의 격 관계(Case)정보를 이용한 것이 성능이 좋게 나왔다.
트위터, 페이스북, 온라인 고객 리뷰 등은 신문기사처럼 정제된 글이 아닌 자유롭게 기술되는 비격식(informal) 텍스트 문서에 속한다. 이러한 비격식 문서에서 일관된 규칙이나 패턴을 찾는 일은 격식(formal) 문서 경우에 비해 용이하지 않기 때문에, 비격식 문서 분석을 위해서는 성능 개선을 위한 추가적인 접근 방법 필요다고 판단된다. 본 연구에서는 대표적 비격식 문서인 트위터 데이터를 열 가지 카테고리로 분류함에 있어 LDA(Latent Dirichlet allocation) 단어 분포를 사용하여 자질(feature)을 교정하고 확장한다. 토픽별로 상위에 랭크된 단어 자질들을 기반으로 다른 단어 자질들을 분해 및 병합하는 방식으로 유용한 자질 집합을 반복적으로 확장시킨다. 이렇게 생성된 자질로 문서 분류를 수행한 결과 자질 확장 이전에 비해 마이크로 평균 F1-score 7.11%p의 성능 개선 효과를 확인할 수 있었다.
최근 감정 분류에 대한 관심이 높아져 연구가 활발히 진행되고 있다. 문서 전체에 관한 감정의 분류도 중요하지만, 문서를 이루고 있는 문장에 관한 분류도 점차 그 필요성이 높아지고 있다. 본 논문에서는 한국어 감정 분류 시스템 구축을 위해서 추출된 한국어 감정 자질을 이용한 한국어 문장 및 문서 감정 분류에 관해 연구한다. 한국어 감정 분류의 시작은 감정을 내포한 대표적인 어휘로부터 시작하며, 이와 같은 감정 자질들은 문장 및 문서의 감정을 분류하는데 결정적인 관여를 한다. 한국어 감정 자질의 추출을 위하여 영어 단어 시소러스 정보를 이용하여 자질들을 확장하고, 영한사전을 통해 확장된 자질들을 번역함으로써 감정 자질들을 추출하였다. 추출된 감정 자질들을 사용하여, 단어 벡터로 표현된 입력문서를 이진 분류기인 지지벡터 기계(SVM: Support Vector Machine)를 이용하여 문장과 문서에 내포된 감정을 판단하고 평가하였다.
본 논문에서는 패턴의 다변화를 통하여 관계를 점진적으로 추출함으로써 온톨로지를 확장하는 모델을 제안한다. 패턴 다변화 과정에서 위키피디아로부터 추출한 관계 패턴 후보를 자질별로 다변화시킨다. 다변화된 패턴 후보로부터 말뭉치 빈도수에 따른 신뢰도를 이용하여 패턴을 선별한다. 선별된 패턴은 위키피디아로부터 관계를 추출하는 데 사용되며, 추출된 관계는 다시 관계 패턴 확장에 사용된다. 본 논문에서는 점진적 학습 과정에서의 패턴 다변화를 통하여 패턴 선택의 범위를 확장함으로써, 선택되는 패턴이 점진적으로 정제되는 모델을 제시한다. 이를 통하여, 관계의 확장성과 정확도를 향상시키고자 하였다. 단일 자질 패턴 모델에 대한 실험을 통하여, 어휘, 중심어, 상위어 정보는 신뢰도에, 품사, 구문 정보는 확장성에 유리하며, 구문 단위 유형별로 필요한 자질 유형이 다름을 관찰하였다. 이와 같은 특성에 기반하여 현재 연구 진행 중인복합 자질 패턴 모델을 제안한다.
이 논문은 사전의 뜻 풀이말을 이용하여 단어 군집화 시스템을 설계하고 구현한다. 군집화를 위해서는 다양한 형태의 자질이 요구되며 어떤 자질을 사용하느냐에 따라 군집화의 성능이 좌우된다. 뜻 풀이말은 표제어를 자세히 설명하고 있기는 하지만, 뜻 풀이말에 사용된 단어가 너무 함축적이거나 추상적이어서 뜻 풀이말이 그다지 길지 않다. 뜻 풀이말로부터 추출된 자질을 그대로 군집화에 이용할 경우에는 다수의 작은 군집이 형성된다. 뜻 풀이말을 이용하여 보다 더 좋은 군집화 결과를 얻기 위해서는 뜻 풀이말의 의미를 크게 손상하지 않는 범위에서 보다 더 일반적인 단어로 바꾸어 군집화에 필요한 자질을 확장할 필요가 있다. 이 논문에서 추상적인 말을 온톨로지 상에서 한 단계 위의 단어로 확장하거나 온톨로지 상에서 고정 높이에 해당하는 단어로 확장함으로써 단어 군집화 성능을 향상시키는 방법을 제안한다. 실험을 통해서 온톨로지를 이용해서 자질을 확장할 경우 단어 군집화 성능이 크게 개선되었으며, 전체적으로 보면 온톨로지 상에서 고정 높이에 해당하는 단어로 확장할 경우가 더 좋은 성능을 보였다. 또한 단어 군집화를 위한 자질로 동사가 매우 유용함을 관찰할 수 있었다.
본 논문은 한국어 문서 감정분류에 기반이 되는 감정 자질의 가중치 강화를 통해 감정분류의 성능 향상을 얻을 수 있는 기법을 제안한다. 먼저, 어휘 자원인 감정 자질을 확보하고, 확장된 감정 자질이 감정 분류에 얼마나 기여하는지를 평가한다. 그리고 학습 데이터를 이용하여 얻을 수 있는 감정 자질의 카이 제곱 통계량(${\chi}^2$ statics)값을 이용하여 각 문장의 감정 강도를 구한다. 이렇게 구한 문장의 감정 강도의 값을 TF-IDF 가중치 기법에 접목하여 감정 자질의 가중치를 강화시킨다. 마지막으로 긍정 문서에서는 긍정 감정 자질만 강화하고 부정 문서에서는 부정 감정 자질만 강화하여 학습하였다. 본 논문에서는 문서 분류에 뛰어난 성능을 보여주는 지지 벡터 기계(Support Vector Machine)를 사용하여 제안한 방법의 성능을 평가한다. 평가 결과, 일반적인 정보 검색에서 사용하는 내용어(Content Word) 기반의 자질을 사용한 경우 보다 약 2.0%의 성능 향상을 보였다.
본 논문에서는 기존의 관계 추출 성능을 향상시키기 위해서 기존의 자질 기반 방법에서 추구하였던 개체 주변 문맥 다양성 정보의 추출 및 적용과 커널 기반 방법의 강점인 관계 인스턴스에 대한 구문 구조적 자질 정보의 통합 활용을 통한 확장된 혼합 커널을 제안한다. ACE RDC 코퍼스를 활용한 실험에서, 기존의 합성곱 구문 트리 커널 기반 혼합 커널을 기반으로 총 9 종류의 평면적 어휘 자질 집합을 정의하고 이를 적용함으로써 성능 향상에 기여하는 어휘 자질 유형을 파악할 수 있었으며, 적은 규모의 학습 집합으로도 현재 최고 수준의 성능에 필적하는 결과를 얻을 수 있었다. 결론적으로 관계 추출을 위한 세 가지 핵심 정보, 즉 개체 자질, 구문 구조적 자질, 주변 문맥 어휘 자질을 통합 적용하면 관계 추출의 성능을 향상시킬 수 있음을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.