• 제목/요약/키워드: 자질 확장

검색결과 57건 처리시간 0.027초

문서범주화 성능 향상을 위한 의미기반 자질확장에 관한 연구 (A Semantic-Based Feature Expansion Approach for Improving the Effectiveness of Text Categorization by Using WordNet)

  • 정은경
    • 정보관리학회지
    • /
    • 제26권3호
    • /
    • pp.261-278
    • /
    • 2009
  • 기계학습 기반 문서범주화 기법에 있어서 최적의 자질을 구성하는 것이 성능향상에 있어서 중요하다. 본 연구는 학술지 수록 논문의 필수적 구성요소인 저자 제공 키워드와 논문제목을 대상으로 자질확장에 관한 실험을 수행하였다. 자질확장은 기본적으로 선정된 자질에 기반하여 WordNet과 같은 의미기반 사전 도구를 활용하는 것이 일반적이다. 본 연구는 키워드와 논문제목을 대상으로 WordNet 동의어 관계 용어를 활용하여 자질확장을 수행하였으며, 실험 결과 문서범주화 성능이 자질확장을 적용하지 않은 결과와 비교하여 월등히 향상됨을 보여주었다. 이러한 성능향상에 긍정적인 영향을 미치는 요소로 파악된 것은 정제된 자질 기반 및 분류어 기준의 동의어 자질확장이다. 이때 용어의 중의성 해소 적용과 비적용 모두 성능향상에 영향을 미친 것으로 파악되었다. 본 연구의 결과로 키워드와 논문제목을 활용한 분류어 기준 동의어 자질 확장은 문서 범주화 성능향상에 긍정적인 요소라는 것을 제시하였다.

듀얼 SMS 스팸 필터링: 그래프 기반 자질 가중치 기법 (Dual SMS SPAM Filtering: A Graph-based Feature Weighting Method)

  • 황재원;고영중
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2014년도 제26회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.95-99
    • /
    • 2014
  • 본 논문에서는 최근 급속히 증가하여 사회적 이슈가 되고 있는 SMS 스팸 필터링을 위한 듀얼 SMS 스팸필터링 기법을 제안한다. 지속적으로 증가하고 새롭게 변형되는 SMS 문자 필터링을 위해서는 패턴 및 스팸 단어 사전을 통한 필터링은 많은 수작업을 요구하여 부적합하다. 그리하여 기계 학습을 이용한 자동화 시스템 구축이 요구되고 있으며, 효과적인 기계 학습을 위해서는 자질 선택과 자질의 가중치 책정 방법이 중요하다. 하지만 SMS 문자 특성상 문장들이 짧기 때문에 출현하는 자질의 수가 적어 분류의 어려움을 겪게 된다. 이 같은 문제를 개선하기 위하여 본 논문에서는 슬라이딩 윈도우 기반 N-gram 확장을 통해 자질을 확장하고, 확장된 자질로 그래프를 구축하여 얕은 구조적 특징을 표현한다. 학습 데이터에 출현한 N-gram 자질을 정점(Vertex)으로, 자질의 출현 빈도를 그래프의 간선(Edge)의 가중치로 설정하여 햄(HAM)과 스팸(SPAM) 그래프를 각각 구성한다. 이렇게 구성된 그래프를 바탕으로 노드의 중요도와 간선의 가중치를 활용하여 최종적인 자질의 가중치를 결정한다. 입력 문자가 도착하면 스팸과 햄의 그래프를 각각 이용하여 입력 문자의 2개의 자질 벡터(Vector)를 생성한다. 생성된 자질 벡터를 지지 벡터 기계(Support Vector Machine)를 이용하여 각 SVM 확률 값(Probability Score)을 얻어 스팸 여부를 결정한다. 3가지의 실험환경에서 바이그램 자질과 이진 가중치를 사용한 기본 시스템보다 F1-Score의 약 최대 2.7%, 최소 0.5%까지 향상되었으며, 결과적으로 평균 약 1.35%의 성능 향상을 얻을 수 있었다.

  • PDF

감정 분류를 위한 한국어 감정 자질 추출 기법과 감정 자질의 유용성 평가 (A Korean Emotion Features Extraction Method and Their Availability Evaluation for Sentiment Classification)

  • 황재원;고영중
    • 인지과학
    • /
    • 제19권4호
    • /
    • pp.499-517
    • /
    • 2008
  • 본 논문에서는 한국어 감정 분류에 기반이 되는 감정 자질 추출의 효과적인 추출 방법을 제안하고 평가하여, 그 유용성을 보인다. 한국어 감정 자질 추출은 감정을 지닌 대표적인 어휘로부터 시작하여 확장할 수 있으며, 이와 같이 추출된 감정 자질들은 문서의 감정을 분류하는데 중요한 역할을 한다. 문서 감정 분류에 핵심이 되는 감정 자질의 추출을 위해서는 영어 단어 시소러스 유의어 정보를 이용하여 자질들을 확장하고, 영한사전을 이용하여 확장된 자질들을 번역하여 감정 자질들을 추출하였다. 추출된 한국어 감정 자질들을 평가하기 위하여, 이진 분류 기법인 지지 벡터 기계(Support Vector Machine)를 사용해서 한국어 감정 자질로 표현된 입력문서의 감정을 분류하였다. 실험 결과, 추출된 감정 자질을 사용한 경우가 일반적인 정보 검색에서 사용하는 내용어(Content Word) 기반의 자질을 사용한 경우보다 약 14.1%의 성능 향상을 보였다.

  • PDF

자질 확장에 따른 용어 클러스터링의 성능 향상 (Enhancement of Word Clustering through Feature Extension)

  • 박은진;김재훈;옥철영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.529-531
    • /
    • 2005
  • 이 논문에서는 용어 클러스터링의 성능에 직접적인 영향을 주는 자질 확장에 따른 시스템의 성능 변화를 보았다. 객관적인 성능 비교를 위하여 용어 클러스터링 결과와 한국어 의미 계층망에서 추출한 클러스터를 비교하였다. 실험 결과, 용어의 뜻 풀이말을 자질로 사용한 경우보다 자질을 확장한 방법(Bigram, Case)이 성능이 좋게 나왔으며, 자질확장 시에 사용되는 말뭉치의 추출방법에 따라 다른 성능을 보였는데, 단순히 Bigram 정보를 사용하여 확장한 것 보다는 동사의 격 관계(Case)정보를 이용한 것이 성능이 좋게 나왔다.

  • PDF

비격식 문서 분류 성능 개선을 위한 LDA 단어 분포 기반의 자질 확장 (Feature Expansion based on LDA Word Distribution for Performance Improvement of Informal Document Classification)

  • 이호경;양선;고영중
    • 정보과학회 논문지
    • /
    • 제43권9호
    • /
    • pp.1008-1014
    • /
    • 2016
  • 트위터, 페이스북, 온라인 고객 리뷰 등은 신문기사처럼 정제된 글이 아닌 자유롭게 기술되는 비격식(informal) 텍스트 문서에 속한다. 이러한 비격식 문서에서 일관된 규칙이나 패턴을 찾는 일은 격식(formal) 문서 경우에 비해 용이하지 않기 때문에, 비격식 문서 분석을 위해서는 성능 개선을 위한 추가적인 접근 방법 필요다고 판단된다. 본 연구에서는 대표적 비격식 문서인 트위터 데이터를 열 가지 카테고리로 분류함에 있어 LDA(Latent Dirichlet allocation) 단어 분포를 사용하여 자질(feature)을 교정하고 확장한다. 토픽별로 상위에 랭크된 단어 자질들을 기반으로 다른 단어 자질들을 분해 및 병합하는 방식으로 유용한 자질 집합을 반복적으로 확장시킨다. 이렇게 생성된 자질로 문서 분류를 수행한 결과 자질 확장 이전에 비해 마이크로 평균 F1-score 7.11%p의 성능 개선 효과를 확인할 수 있었다.

감정 자질을 이용한 한국어 문장 및 문서 감정 분류 시스템 (A Korean Sentence and Document Sentiment Classification System Using Sentiment Features)

  • 황재원;고영중
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제14권3호
    • /
    • pp.336-340
    • /
    • 2008
  • 최근 감정 분류에 대한 관심이 높아져 연구가 활발히 진행되고 있다. 문서 전체에 관한 감정의 분류도 중요하지만, 문서를 이루고 있는 문장에 관한 분류도 점차 그 필요성이 높아지고 있다. 본 논문에서는 한국어 감정 분류 시스템 구축을 위해서 추출된 한국어 감정 자질을 이용한 한국어 문장 및 문서 감정 분류에 관해 연구한다. 한국어 감정 분류의 시작은 감정을 내포한 대표적인 어휘로부터 시작하며, 이와 같은 감정 자질들은 문장 및 문서의 감정을 분류하는데 결정적인 관여를 한다. 한국어 감정 자질의 추출을 위하여 영어 단어 시소러스 정보를 이용하여 자질들을 확장하고, 영한사전을 통해 확장된 자질들을 번역함으로써 감정 자질들을 추출하였다. 추출된 감정 자질들을 사용하여, 단어 벡터로 표현된 입력문서를 이진 분류기인 지지벡터 기계(SVM: Support Vector Machine)를 이용하여 문장과 문서에 내포된 감정을 판단하고 평가하였다.

자질별 관계 패턴의 다변화를 통한 온톨로지 확장 (Incremental Enrichment of Ontologies through Feature-based Pattern Variations)

  • 이신목;장두성;신지애
    • 정보처리학회논문지B
    • /
    • 제15B권4호
    • /
    • pp.365-374
    • /
    • 2008
  • 본 논문에서는 패턴의 다변화를 통하여 관계를 점진적으로 추출함으로써 온톨로지를 확장하는 모델을 제안한다. 패턴 다변화 과정에서 위키피디아로부터 추출한 관계 패턴 후보를 자질별로 다변화시킨다. 다변화된 패턴 후보로부터 말뭉치 빈도수에 따른 신뢰도를 이용하여 패턴을 선별한다. 선별된 패턴은 위키피디아로부터 관계를 추출하는 데 사용되며, 추출된 관계는 다시 관계 패턴 확장에 사용된다. 본 논문에서는 점진적 학습 과정에서의 패턴 다변화를 통하여 패턴 선택의 범위를 확장함으로써, 선택되는 패턴이 점진적으로 정제되는 모델을 제시한다. 이를 통하여, 관계의 확장성과 정확도를 향상시키고자 하였다. 단일 자질 패턴 모델에 대한 실험을 통하여, 어휘, 중심어, 상위어 정보는 신뢰도에, 품사, 구문 정보는 확장성에 유리하며, 구문 단위 유형별로 필요한 자질 유형이 다름을 관찰하였다. 이와 같은 특성에 기반하여 현재 연구 진행 중인복합 자질 패턴 모델을 제안한다.

온톨로지를 이용한 단어 군집화 성능 개선 (Performance Improvement of Word Clustering Using Ontology)

  • 박은진;김재훈;옥철영
    • 정보처리학회논문지B
    • /
    • 제13B권3호
    • /
    • pp.337-344
    • /
    • 2006
  • 이 논문은 사전의 뜻 풀이말을 이용하여 단어 군집화 시스템을 설계하고 구현한다. 군집화를 위해서는 다양한 형태의 자질이 요구되며 어떤 자질을 사용하느냐에 따라 군집화의 성능이 좌우된다. 뜻 풀이말은 표제어를 자세히 설명하고 있기는 하지만, 뜻 풀이말에 사용된 단어가 너무 함축적이거나 추상적이어서 뜻 풀이말이 그다지 길지 않다. 뜻 풀이말로부터 추출된 자질을 그대로 군집화에 이용할 경우에는 다수의 작은 군집이 형성된다. 뜻 풀이말을 이용하여 보다 더 좋은 군집화 결과를 얻기 위해서는 뜻 풀이말의 의미를 크게 손상하지 않는 범위에서 보다 더 일반적인 단어로 바꾸어 군집화에 필요한 자질을 확장할 필요가 있다. 이 논문에서 추상적인 말을 온톨로지 상에서 한 단계 위의 단어로 확장하거나 온톨로지 상에서 고정 높이에 해당하는 단어로 확장함으로써 단어 군집화 성능을 향상시키는 방법을 제안한다. 실험을 통해서 온톨로지를 이용해서 자질을 확장할 경우 단어 군집화 성능이 크게 개선되었으며, 전체적으로 보면 온톨로지 상에서 고정 높이에 해당하는 단어로 확장할 경우가 더 좋은 성능을 보였다. 또한 단어 군집화를 위한 자질로 동사가 매우 유용함을 관찰할 수 있었다.

한국어 문서 감정분류를 위한 감정 자질 가중치 강화 기법 (A Weight Boosting Method of Sentiment Features for Korean Document Sentiment Classification)

  • 황재원;고영중
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2008년도 제20회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.201-206
    • /
    • 2008
  • 본 논문은 한국어 문서 감정분류에 기반이 되는 감정 자질의 가중치 강화를 통해 감정분류의 성능 향상을 얻을 수 있는 기법을 제안한다. 먼저, 어휘 자원인 감정 자질을 확보하고, 확장된 감정 자질이 감정 분류에 얼마나 기여하는지를 평가한다. 그리고 학습 데이터를 이용하여 얻을 수 있는 감정 자질의 카이 제곱 통계량(${\chi}^2$ statics)값을 이용하여 각 문장의 감정 강도를 구한다. 이렇게 구한 문장의 감정 강도의 값을 TF-IDF 가중치 기법에 접목하여 감정 자질의 가중치를 강화시킨다. 마지막으로 긍정 문서에서는 긍정 감정 자질만 강화하고 부정 문서에서는 부정 감정 자질만 강화하여 학습하였다. 본 논문에서는 문서 분류에 뛰어난 성능을 보여주는 지지 벡터 기계(Support Vector Machine)를 사용하여 제안한 방법의 성능을 평가한다. 평가 결과, 일반적인 정보 검색에서 사용하는 내용어(Content Word) 기반의 자질을 사용한 경우 보다 약 2.0%의 성능 향상을 보였다.

  • PDF

평면적 어휘 자질들을 활용한 확장 혼합 커널 기반 관계 추출 (Relation Extraction based on Extended Composite Kernel using Flat Lexical Features)

  • 최성필;정창후;최윤수;맹성현
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권8호
    • /
    • pp.642-652
    • /
    • 2009
  • 본 논문에서는 기존의 관계 추출 성능을 향상시키기 위해서 기존의 자질 기반 방법에서 추구하였던 개체 주변 문맥 다양성 정보의 추출 및 적용과 커널 기반 방법의 강점인 관계 인스턴스에 대한 구문 구조적 자질 정보의 통합 활용을 통한 확장된 혼합 커널을 제안한다. ACE RDC 코퍼스를 활용한 실험에서, 기존의 합성곱 구문 트리 커널 기반 혼합 커널을 기반으로 총 9 종류의 평면적 어휘 자질 집합을 정의하고 이를 적용함으로써 성능 향상에 기여하는 어휘 자질 유형을 파악할 수 있었으며, 적은 규모의 학습 집합으로도 현재 최고 수준의 성능에 필적하는 결과를 얻을 수 있었다. 결론적으로 관계 추출을 위한 세 가지 핵심 정보, 즉 개체 자질, 구문 구조적 자질, 주변 문맥 어휘 자질을 통합 적용하면 관계 추출의 성능을 향상시킬 수 있음을 알 수 있었다.