• 제목/요약/키워드: 자질 생성

검색결과 102건 처리시간 0.034초

위키피디아 QA를 위한 질의문의 정답제약 추출 (Answer Constraints Extraction on User Question for Wikipedia QA)

  • 왕지현;허정;이형직;배용진;김현기
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2017년도 제29회 한글및한국어정보처리학술대회
    • /
    • pp.248-250
    • /
    • 2017
  • 질의응답 시스템에서 정답을 제약하기 위한 위키피디아 영역의 정답제약 9개를 정의하고 질문 문장에서 제약표현을 추출하는 방법을 제안한다. 다어절의 정답제약 표현을 추출하기 위해서 언어분석 결과를 활용하여 정답제약 후보를 생성하며 후보단위로 정답제약 표현을 학습하기 위한 자질을 제시한다. 기계학습 방법을 이용하여 정답제약 후보 별로 정답제약 태그를 분류하여 정답제약 표현을 추출한다. 성능 실험은 각 정답제약 태그 별로 F1-Score 평가를 수행하였다.

  • PDF

대화처리를 위한 통계기반 한국어 음성언어이해 시스템 (Statistical Korean Spoken Language Understanding System for Dialog Processing)

  • 노윤형;양성일;김영길
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2012년도 제24회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.215-218
    • /
    • 2012
  • 본 논문에서는 한국어 대화 처리를 위한 통계기반 음성언어이해 시스템에 대해 기술한다. 음성언어이해시스템은 대화처리에서 음성 인식된 문장으로부터 사용자의 의도를 인식하여 의미표현으로 표현하는 기능을 담당한다. 한국어의 특성을 반영한 실용적인 음성언어이해 시스템을 위해서 강건성과 적용성, 확장성 등이 요구된다. 이를 위해 본 시스템은 음성언어의 특성상 구조분석을 하지 않고, 마이닝 기법을 이용하여 사용자 의도 표현을 생성하는 방식을 취하고 있다. 또한 한국어에서 나타나는 특징들에 대한 처리를 위해 자질 추가 및 점규화 처리 등을 수행하였다. 정보서비스용 대화처리 시스템을 대상으로 개발되고 있고, 차량 정보서비스용 학습 코퍼스를 대상으로 실험을 하여 문장단위 정확률로 약 89%의 성능을 보이고 있다.

  • PDF

계층 구조 어텐션 매커니즘에 기반한 CNN-RNN을 이용한 한국어 화행 분석 시스템 (Hierarchical attention based CNN-RNN networks for The Korean Speech-Act Analysis)

  • 서민영;홍태석;김주애;고영중;서정연
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.243-246
    • /
    • 2018
  • 최근 사용자 발화를 이해하고 그에 맞는 피드백을 생성할 수 있는 대화 시스템의 중요성이 증가하고 있다. 따라서 사용자 의도를 파악하기 위한 화행 분석은 대화 시스템의 필수적인 요소이다. 최근 많이 연구되는 심층 학습 기법은 모델이 데이터로부터 자질들을 스스로 추출한다는 장점이 있다. 발화 자체의 연속성과 화자간 상호 작용을 포착하기 위하여 CNN에 RNN을 결합한 CNN-RNN을 제안한다. 본 논문에서 제안한 계층 구조 어텐션 매커니즘 기반 CNN-RNN을 효과적으로 적용한 결과 워드 임베딩을 추가한 조건에서 가장 높은 성능인 91.72% 정확도를 얻었다.

  • PDF

다중 등급 유해문서 분류를 위한 워크벤치 프로그램 구현 (Implementation of Workbench Program for Multi-Level Harmful Document Classification)

  • 이원휘;조윤정;정성종;안동언
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.691-692
    • /
    • 2008
  • 유해 문서를 분류하기 위한 고정된 등급에 의한 분류가 아닌 사용자의 필요에 의해 다양한 등급으로 분류할 수 있는 분류기를 구현하였다. 자질 생성을 위해 ${\chi}^2$, IG, DF, ICF를 이용하였으며, 분류를 위해 나이브 베이지언, C4.5, kNN, SVM을 이용하였다.

  • PDF

영어 말하기, 쓰기 학습자를 위한 문법 오류 검출 시스템 (Grammar Error Detection System for Learners of Spoken and Written English)

  • 서홍석;이성진;이진식;이종훈;이근배
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2011년도 제23회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.136-139
    • /
    • 2011
  • 외국어 교육의 필요성이 강조되고 그에 대한 요구가 늘어남에 따라 언어 교육의 기회를 늘리고 비용을 줄이기 위해 컴퓨터 기반의 다양한 기술들의 요구 역시 증가하고 개발되고 있다. 언어 능력 개발의 중요한 요소로서 문법 교육에 대한 컴퓨터 지원 기술 연구가 활발히 진행되고 있다. 본 연구에서는 문법 오류 시뮬레이션을 통해 문법 오류 패턴 데이터베이스를 구축하고 이들 패턴과 사용자 입력의 패턴 매칭으로 생성된 자질 벡터로 기계 학습을 하여 문법성 확인을 했다. 문법성 확인 결과에 따라 오류 종류에 따른 상대 빈도를 고려하여 오류 종류를 분류했다. 또 말하기와 쓰기 작업의 서로 다른 특성을 반영하기 위해 말하기 작업과 쓰기 작업에 대한 두 개의 다른 말뭉치가 학습에 이용 되었다.

  • PDF

점진적 학습 기반 모아 콘텐츠 큐레이션 서비스 시스템 설계 (Design of Moa Contents Curation Service System Based on Incremental Learning Technology)

  • 이정원;민병원;오용선
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2018년도 춘계 종합학술대회 논문집
    • /
    • pp.401-402
    • /
    • 2018
  • 콘텐츠 큐레이션 서비스를 위해서 대용량 데이터를 학습하는 과정에서 발생하는 메모리부족 문제, 학습소요시간 문제 등을 해결하기 위한 "대용량 문서학습을 위한 동적학습 파이프라인 생성기술 중 빅데이터 마이닝을 위한 점진적 학습 모델" 기술이 필요하며, 본 논문에서 제안한 콘텐츠 큐레이션 서비스는 온라인상의 수많은 콘텐츠들 중 개인의 주관이나 관점에 따라 관련 콘텐츠들을 수집, 정리하고 편집하여 이용자와 관련이 있거나 좋아할 만한 콘텐츠를 제공하는 서비스이다. 본 논문에서 설계된 모아 큐레이션 서비스는 대용량의 문서를 학습함에 있어서 메모리 부족 문제, 학습 소요시간 문제 등을 해결하기 위해 학습데이터의 용량 제한이 없는 문서를 자유롭게 학습하고 부분적인 자질추가/변경 시에 변경요소만을 추가 반영할 수 있는 범용적이고 일반적인 분류기의 구조설계 방법 등을 제시하였다.

  • PDF

길이 정보와 유사도 정보를 이용한 한영 문장 정렬 (Korean-English Sentence Alignment using Length and Similarity Information)

  • 홍진표;차정원
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2010년도 제22회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.130-135
    • /
    • 2010
  • 문장 정렬은 두 개의 문서 간의 대응이 되는 문장을 찾는 작업이다. 이 방법은 통계적 기계 번역의 학습 문서인 병렬 말뭉치를 자동으로 구축하는데 필수적인 방법이다. 본 연구에서는 길이 정보에 추가적으로 유사도 정보를 반영하는 한영 문장 정렬 방법을 제안한다. 먼저 한국어로 된 문서를 기계번역 시스템에 적용하여 영어 문서로 변환한다. 그리고 번역된 영어로 된 문서 결과와 영어로 된 대상 문서 간의 정렬 작업을 수행한다. 정렬 완료된 결과와 원시 문서, 대상 문서로부터 최종적인 결과를 생성해낸다. 본 논문에서는 기계 번역을 이용하는 방법과 더불어 기존의 길이 기반 문장 정렬 프로그램에 문장 유사도 정보를 추가하여 단어 정렬의 성능 향상을 꾀하였다. 그 결과 "21세기 세종기획"의 최종 배포본 내에 포함된 한영 병렬 말뭉치에 대해 한영 문장 정렬 F-1 자질의 결과가 89.39%를 보였다. 이 수치는 기존의 길이 기반의 단어 정렬의 성능 평가 결과와 비교했을 때 약 8.5% 가량 성능이 향상되었다.

  • PDF

점진적 빅데이터 학습기반의 전자저널 구독가치 큐레이션 서비스 (Journal Subscription Value Curation Service Based on Incremental Big Data Learning)

  • 이정원;진성일
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2019년도 춘계종합학술대회
    • /
    • pp.409-410
    • /
    • 2019
  • 점진적 빅데이터 학습 기반의 전자저널 구독가치 큐레이션 서비스는 대용량의 학술정보 처리환경을 하드웨어 기반에서 소프트웨어 기반으로 데이터를 학습함에 있어 학습 소요시간 및 메모리 부족 문제 등을 해결하기 위해 널리 사용하는 자질축소 기법에 의존하지 않고 대량의 데이터를 자유롭게 학습하고 증분 데이터 변경요소만을 추가 반영할 수 있는 범용적이고 일반적인 분류기의 구조설계 방법이다. 학술정보의 논문요약과 참고문헌의 데이터 수집 정제 분류 저장 분석을 통해 활용할 수 있는 지표를 생성하여 도서관 학교 공공기관 연구기관 등에 제공하여 기관에서 구독하고 있는 학술지가 연구에 얼마나 활용되고 있는지를 판단하는 정보 가용성을 활용한 양질의 정보원을 확보하여 불필요한 저널 구독을 중단하고 연구자가 요구하는 품질 좋은 학술정보를 제공할 수 있는 서비스로 일반적인 학술문헌 이용도 평가방법과 달리 구독 가치에 대한 지표를 제공하는 큐레이팅 방법이다.

  • PDF

한국어 언어학적 특성 기반 감성분석 모델 비교 분석 (Comparative Study of Sentiment Analysis Model based on Korean Linguistic Characteristics)

  • 김경민;박찬준;조재춘;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.149-152
    • /
    • 2019
  • 감성분석이란 입력된 텍스트의 감성을 분류하는 자연어처리의 한 분야로, 최근 CNN, RNN, Transformer등의 딥러닝 기법을 적용한 다양한 연구가 있다. 한국어 감성분석을 진행하기 위해서는 형태소, 음절 등의 추가 자질을 활용하는 것이 효과적이며 성능 향상을 기대할 수 있는 방법이다. 모델 생성에 있어서 아키텍쳐 구성도 중요하지만 문맥에 따른 언어를 컴퓨터가 표현할 수 있는 지식 표현 체계 구성도 상당히 중요하다. 이러한 맥락에서 BERT모델은 문맥을 완전한 양방향으로 이해할 수있는 Language Representation 기반 모델이다. 본 논문에서는 최근 CNN, RNN이 융합된 모델과 Transformer 기반의 한국어 KoBERT 모델에 대해 감성분석 task에서 다양한 성능비교를 진행했다. 성능분석 결과 어절단위 한국어 KoBERT모델에서 90.50%의 성능을 보여주었다.

  • PDF

의존 구문 분석을 이용한 질의 기반 정답 추출 (Query-based Answer Extraction using Korean Dependency Parsing)

  • 이도경;김민태;김우주
    • 지능정보연구
    • /
    • 제25권3호
    • /
    • pp.161-177
    • /
    • 2019
  • 질의응답 시스템은 크게 사용자의 질의를 분석하는 방법인 질의 분석과 문서 내에서 적합한 정답을 추출하는 방법인 정답 추출로 이루어지며, 두 방법에 대한 다양한 연구들이 진행되고 있다. 본 연구에서는 문장의 의존 구문 분석 결과를 이용하여 질의응답 시스템 내 정답 추출의 성능 향상을 위한 연구를 진행한다. 정답 추출의 성능을 높이기 위해서는 문장의 문법적인 정보를 정확하게 반영할 필요가 있다. 한국어의 경우 어순 구조가 자유롭고 문장의 구성 성분 생략이 빈번하기 때문에 의존 문법에 기반한 의존 구문 분석이 적합하다. 기존에 의존 구문 분석을 질의응답 시스템에 반영했던 연구들은 구문 관계 정보나 구문 형식의 유사도를 정의하는 메트릭을 사전에 정의해야 한다는 한계점이 있었다. 또 문장의 의존 구문 분석 결과를 트리 형태로 표현한 후 트리 편집 거리를 계산하여 문장의 유사도를 계산한 연구도 있었는데 이는 알고리즘의 연산량이 크다는 한계점이 존재한다. 본 연구에서는 구문 패턴에 대한 정보를 사전에 정의하지 않고 정답 후보 문장을 그래프로 나타낸 후 그래프 정보를 효과적으로 반영할 수 있는 Graph2Vec을 활용하여 입력 자질을 생성하였고, 이를 정답 추출모델의 입력에 추가하여 정답 추출 성능 개선을 시도하였다. 의존 그래프를 생성하는 단계에서 의존 관계의 방향성 고려 여부와 노드 간 최대 경로의 길이를 다양하게 설정하며 자질을 생성하였고, 각각의 경우에 따른 정답추출 성능을 비교하였다. 본 연구에서는 정답 후보 문장들의 신뢰성을 위하여 웹 검색 소스를 한국어 위키백과, 네이버 지식백과, 네이버 뉴스로 제한하여 해당 문서에서 기존의 정답 추출 모델보다 성능이 향상함을 입증하였다. 본 연구의 실험을 통하여 의존 구문 분석 결과로 생성한 자질이 정답 추출 시스템 성능 향상에 기여한다는 것을 확인하였고 해당 자질을 정답 추출 시스템뿐만 아니라 감성 분석이나 개체명 인식과 같은 다양한 자연어 처리 분야에 활용 될 수 있을 것으로 기대한다.