• Title/Summary/Keyword: 자질선택

Search Result 125, Processing Time 0.039 seconds

Effective Feature Selection for Patent Classification (특허 분류를 위한 효과적인 자질 선택)

  • Jung Ha-Yong;Huang Jin-Xia;Shin Sa-Im;Choi Key-Sun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.670-672
    • /
    • 2005
  • 자질 선택은 문서 분류와 같이 않은 자질을 사용하는 지도식 기계학습에 관한 연구에서 날로 중요성이 커지고 있다. 특히 특허문서 분류와 같은 작업은 기존의 문서 분류보다도 훨씬 많은 자질과 분류 범주를 가지기 때문에 전체 문서의 특징을 드러내는 적절한 부분집합을 선택해 학습하는 것이 절실하다. 전통적인 자질선택 방법은 필터라는 방법으로서 빠르지만 임계값을 정하기가 어렵다는 문제가 있다. 한편 최근에 많이 연구되는 래퍼는 일반적으로 필터보다. 좋은 성능을 보이지만 자질의 개수가 많을수록 시간이 오래 걸린다는 단점이 있다. 본 연구에서는 필터와 래퍼를 상호 보완적으로 결합하여 최적의 필터를 자동적으로 찾는 래퍼를 제안한다. 실험 결과, 제안한 방법이 효과적으로 자질 집합을 선택하는 것을 확인할 수 있었다.

  • PDF

Feature Filtering Methods for Web Documents Clustering (웹 문서 클러스터링에서의 자질 필터링 방법)

  • Park Heum;Kwon Hyuk-Chul
    • The KIPS Transactions:PartB
    • /
    • v.13B no.4 s.107
    • /
    • pp.489-498
    • /
    • 2006
  • Clustering results differ according to the datasets and the performance worsens even while using web documents which are manually processed by an indexer, because although representative clusters for a feature can be obtained by statistical feature selection methods, irrelevant features(i.e., non-obvious features and those appearing in general documents) are not eliminated. Those irrelevant features should be eliminated for improving clustering performance. Therefore, this paper proposes three feature-filtering algorithms which consider feature values per document set, together with distribution, frequency, and weights of features per document set: (l) features filtering algorithm in a document (FFID), (2) features filtering algorithm in a document matrix (FFIM), and (3) a hybrid method combining both FFID and FFIM (HFF). We have tested the clustering performance by feature selection using term frequency and expand co link information, and by feature filtering using the above methods FFID, FFIM, HFF methods. According to the results of our experiments, HFF had the best performance, whereas FFIM performed better than FFID.

Decision of the Korean Speech Act using Feature Selection Method (자질 선택 기법을 이용한 한국어 화행 결정)

  • 김경선;서정연
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.3_4
    • /
    • pp.278-284
    • /
    • 2003
  • Speech act is the speaker's intentions indicated through utterances. It is important for understanding natural language dialogues and generating responses. This paper proposes the method of two stage that increases the performance of the korean speech act decision. The first stage is to select features from the part of speech results in sentence and from the context that uses previous speech acts. We use x$^2$ statistics(CHI) for selecting features that have showed high performance in text categorization. The second stage is to determine speech act with selected features and Neural Network. The proposed method shows the possibility of automatic speech act decision using only POS results, makes good performance by using the higher informative features and speed up by decreasing the number of features. We tested the system using our proposed method in Korean dialogue corpus transcribed from recording in real fields, and this corpus consists of 10,285 utterances and 17 speech acts. We trained it with 8,349 utterances and have test it with 1,936 utterances, obtained the correct speech act for 1,709 utterances(88.3%). This result is about 8% higher accuracy than without selecting features.

A Fast Text Classifier with feature Value Voting and Document-Side Feature Selection (자질값투표 기법과 문서측 자질 선정을 이용한 고속 문서 분류기)

  • Lee, Jae-Yun
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2005.08a
    • /
    • pp.71-78
    • /
    • 2005
  • 빠르면서도 정확한 문서 자동분류를 위해서 자질값투표 기법과 문서측 자질선정 방식의 결합을 제안하였다. 자질값은 미리 학습된 분류자질과 분류범주간의 연관성을 뜻하는 것으로서, 자질값투표 기법은 분류대상 문서에 나타난 자질들의 자질값을 후보범주마다 합산하여 가장 높은 범주로 분류하는 것이다. 문서측 자질선정은 일반적인 분류자질선정과 달리 학습집단이 아닌 분류대상 문서의 자질 중 일부만을 선택하여 분류에 이용하는 방식이다. 이들을 결합하여 사용한 결과 실험환경에서는 나이브베이즈 분류기만큼 간단하고 빠르면서 SVM 분류기보다 좋은 성능을 보였다.

  • PDF

Feature Selection and Classification of Web Pages (웹 페이지에서의 자질 선택과 분류)

  • 송무희;임수연;박성배;강동진;이상조
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.796-798
    • /
    • 2004
  • 본 논문에서는 웹 문서의 분류 성능을 향상시키기 위해 웹 페이지에서의 자질선택과 그에 따른 웹 문서 분류 방법을 제안한다. 문서 분류에는 문서에 포함된 단어를 분류 자질로 사용하게 되며 이때 한 문서의 모든 단어를 분류 자질로 이용한다고 좋은 성능을 보인다고 보장할 수는 없다. 그러므로 문서에 필요한 단어만을 자동으로 추출하여 문서데이터의 자질을 축소하는 작업이 필요하다. 따라서 본 논문에서는 모집군 내의 자질벡터의 범위가 큰 것을 적은 수의 주요성분으로 감소시키기 위해 통계적 분석 기법중의 하나인 주성분분석 방법을 이용하여 자질감소와 그에 따른 문서분류의 성능 향상을 실험을 통하여 보인다. 야후 스포츠 뉴스 웹 페이지가 분류를 위해 사용되었으며, 분류기로는 Naive Bayesian 분류 방법을 사용하였다. 실험 결과를 통해 본 논문에서 제안한 뉴스 웹페이지 분류 방법이 스포츠 뉴스 데이터 군에서 만족할 만한 분류 정확도를 제공한다는 것을 알 수 있다.

  • PDF

Spam Filter by Using X2 Statistics and Support Vector Machines (카이제곱 통계량과 지지벡터기계를 이용한 스팸메일 필터)

  • Lee, Song-Wook
    • The KIPS Transactions:PartB
    • /
    • v.17B no.3
    • /
    • pp.249-254
    • /
    • 2010
  • We propose an automatic spam filter for e-mail data using Support Vector Machines(SVM). We use a lexical form of a word and its part of speech(POS) tags as features and select features by chi square statistics. We represent each feature by TF(text frequency), TF-IDF, and binary weight for experiments. After training SVM with the selected features, SVM classifies each e-mail as spam or not. In experiment, the selected features improve the performance of our system and we acquired overall 98.9% of accuracy with TREC05-p1 spam corpus.

Named Entity Recognition based on CRF reflecting relative weight (상대적 가중치 자질을 반영한 CRF 기반의 개체명 인식)

  • Jeong, Jin-Wook
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.338-339
    • /
    • 2017
  • 본 논문은 개체명 인식을 위해 CRF 모델을 이용해 분류를 수행했다. 개체명 후보를 개체명으로 식별에서 중의성 문제가 필요하다. 본 논문에서는 이러한 중의성 문제 해결을 위해 학습 셋으로부터 패턴과 형태적 특성을 고려해 개체명 후보를 최대로 선택하고 선택된 개체명 후보의 중의성과 정확도를 높이기 위해 주변의 문맥 자질과 분별 확률 모델인 CRF를 이용해 중의성 문제를 해결한다.

  • PDF

Biomarker Detection on Aptamer-based Biochip Data by Potential SVM (Potential SVM을 이용한 압타머칩에서의 바이오마커 탐색)

  • Kim, Byoung-Hee;Kim, Sung-Chun;Zhang, Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10a
    • /
    • pp.22-27
    • /
    • 2006
  • 압타머칩은 혈청(serum) 내의 지정된 단백질의 상대적 양을 직접 측정할 수 있는 바이오칩으로서, 의학적 질병 진단에 유용하게 사용할 수 있는 툴이다. 압타머칩 데이터 분석에는 기존의 마이크로어레이 분석기법을 그대로 적용할 수 있다. 본 논문에서는 Potential SVM(PSVM)을 이용하여, 심혈관질환 샘플 기반의 압타머칩 데이터에서 바이오마커 후보 단백질을 선정한 결과를 정리한다. PSVM은 분류 알고리즘으로서 뿐만 아니라 자질 선택(feature selection)에서도 우수한 성능을 보이는 알고리즘으로 알려져 있다. 심혈관 질환의 단계에 따라 구분한 4개 클래스, 135개 샘플로 구성된 3K 압타머칩 데이터에 대해 PSVM을 적용하여 자질을 선택하고 분류성능을 측정한 결과, 마이크로어레이에서의 자질 선택에 많이 사용되는 Gain Ratio 기법과 비교하여 보다 적은 수의 단백질 정보로 보다 나은 분류 성능을 보임을 확인하였다. 더불어, PSVM을 이용해 선택한 단백질군을 심혈관 질환 진단을 위한 바이오마커 후보로 제시한다.

  • PDF

Mortality Prediction of Older Adults Using Random Forest and Deep Learning (랜덤 포레스트와 딥러닝을 이용한 노인환자의 사망률 예측)

  • Park, Junhyeok;Lee, Songwook
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.10
    • /
    • pp.309-316
    • /
    • 2020
  • We predict the mortality of the elderly patients visiting the emergency department who are over 65 years old using Feed Forward Neural Network (FFNN) and Convolutional Neural Network (CNN) respectively. Medical data consist of 99 features including basic information such as sex, age, temperature, and heart rate as well as past history, various blood tests and culture tests, and etc. Among these, we used random forest to select features by measuring the importance of features in the prediction of mortality. As a result, using the top 80 features with high importance is best in the mortality prediction. The performance of the FFNN and CNN is compared by using the selected features for training each neural network. To train CNN with images, we convert medical data to fixed size images. We acquire better results with CNN than with FFNN. With CNN for mortality prediction, F1 score and the AUC for test data are 56.9 and 92.1 respectively.

Improving the Performance of a Fast Text Classifier with Document-side Feature Selection (문서측 자질선정을 이용한 고속 문서분류기의 성능향상에 관한 연구)

  • Lee, Jae-Yun
    • Journal of Information Management
    • /
    • v.36 no.4
    • /
    • pp.51-69
    • /
    • 2005
  • High-speed classification method becomes an important research issue in text categorization systems. A fast text categorization technique, named feature value voting, is introduced recently on the text categorization problems. But the classification accuracy of this technique is not good as its classification speed. We present a novel approach for feature selection, named document-side feature selection, and apply it to feature value voting method. In this approach, there is no feature selection process in learning phase; but realtime feature selection is executed in classification phase. Our results show that feature value voting with document-side feature selection can allow fast and accurate text classification system, which seems to be competitive in classification performance with Support Vector Machines, the state-of-the-art text categorization algorithms.