• Title/Summary/Keyword: 자중압밀

Search Result 75, Processing Time 0.035 seconds

The Characteristics of Sedimentation and Self-Weight Consolidation for Dredged Soil Depending on Fines Content (세립분 함유량에 따른 준설토의 침강 및 자중압밀특성)

  • Lee, Bum-Jun;Lee, Moo-Cheol;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.8
    • /
    • pp.129-135
    • /
    • 2007
  • In order to analyze the effect of fines content on sedimentation and self-weight consolidation characteristics of dredged soil, a series of self-weight consolidation tests with different fines content were conducted. From the experimental test results on dredged soils, it was found that the coefficient of sedimentation and consolidation is correlated with water content. And it is related to fines content as well. So, in this study, correlation between fines content and the coefficient of sedimentation and consolidation has been proposed. And it is expected that the coefficient of sedimentation and consolidation can be estimated by the percentage of fines content.

2-D Axisymmetric Non-linear Finite Strain Consolidation Model Considering Self-weight Consolidation of Dredged Soil (준설매립지반의 자중압밀을 고려한 2차원 축대칭 비선형 유한변형 압밀 모델)

  • Kwak, Tae-Hoon;Lee, Dong-Seop;Lim, Jee-Hee;Stark, T.D.;Choi, Eun-Seok;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.8
    • /
    • pp.5-19
    • /
    • 2012
  • Vertical drains along with the preloading technique have been commonly used to enhance the consolidation rate of dredged placement formation. In practice, vertical drains are usually installed in the process of self-weight consolidation of a dredged soil deposit because this process takes considerable time to be completed, which makes conventional analytical or numerical models difficult to quantify the consolidation behavior. In this paper, we propose a governing partial differential equation and develop a numerical model for 2-D axisymmetric non-linear finite strain consolidation considering self-weight consolidation to predict the behavior of a vertical drain in the dredged placement foundation which is installed during the self-weight consolidation. In order to verify the developed model in this paper, results of the numerical analysis are compared with that of the lab-scaled self-weight consolidation test. In addition, the model verification has been carried out by comparing with the simplified method. The comparisons show that the developed model can properly simulate the consolidation of the dredged placement formation with the vertical drains installed during the self-weight consolidation. Finally, the effect of construction schedule of vertical drains and of pre-loading during the self-weight consolidation is examined by simulating an imaginary dredged material placement site with a thickness of 10 m and 20 m, respectively. This simulation infers the applicability of the proposed method in this research for designing a soil improvement in a soft dredged deposit when vertical drains and pre-loading are implemented before the self-weight consolidation ceases.

A Study on the Self-Weight Consolidation Procedure of Very Soft Ground Reclaimed by Dredging Clayey Soil (연약한 준설 매립 점성토지반의 자중압밀 과정에 관한 연구)

  • 김형주;오근엽
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.129-138
    • /
    • 1999
  • This study is performed for the development of a field monitoring and test technique both of self-weight and hydraulic consolidation by which the soil parameters of dredge-reclaimed clay can be obtained effectively. The field monitoring development and tests mentioned above make it possible to reproduce the process of the self-weight consolidation from settling to reclaimed soft ground. The experimental research is mainly focussed on the characteristics of self-weight consolidation of dredged clayey soil. And theoretical study has pointed out the limits in the application of Terzaghi's one dimensional consolidation theory in interpreting reclaimed clayey ground. Furthermore, a finite difference analysis has been made on the basis of Mikasa s self-weight consolidation theory which takes the problems of Terzaghi's theory into consideration. The relationships between specific volume, effective stress, and the coefficient of permeability of Kunsan reclaimed clayey soil have been obtained by laboratory tests. On the other hand, through the field monitoring, pore pressure, total pressure, and water levels have been measured after pouring. The results of these experiments have been analyzed, and compared with those from Terzaghi's method and the finite difference analysis of Mikasa's self-weight consolidation theory. In conclusion, the measured settlements is comparatively consistent with Mikasa's self-weight consolidation theory rather than Terzaghi's consolidation theory.

  • PDF

Non-linear Finite Strain Consolidation of Ultra-soft Soil Formation Considering Radial Drainage (방사방향 배수를 고려한 초연약 지반의 비선형 유한변형 자중압밀 거동 분석)

  • An, Yong-Hoon;Kwak, Tae-Hoon;Lee, Chul-Ho;Choi, Hang-Seok;Choi, Eun-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.11
    • /
    • pp.17-28
    • /
    • 2010
  • Vertical drains are commonly used to accelerate the consolidation process of soft soils, such as dredged materials, because they additionally provide a radial drainage path in a deep soil deposit. In practice, vertical drains are commonly installed in the process of self-weight consolidation of a dredged soil deposit. The absence of an appropriate analysis tool for this situation makes it substantially difficult to estimate self-weight consolidation behavior considering both vertical and radial drainage. In this paper, a new method has been proposed to take into account both vertical and radial drainage conditions during nonlinear finite strain self-weight consolidation of dredged soil deposits. For 1-D nonlinear finite strain consolidation in the vertical direction, the Morris (2002) theory and the PSDDF analysis are adopted, respectively. On the other hand, to consider the radial drainage, Barron's vertical drain theory (1948) is used. The overall average degree of self-weight consolidation of the dredged soil is estimated using the Carillo formula (1942), in which both vertical and radial drainage are assembled together. A series of large-scale self-weight consolidation experiments being equipped with a vertical drain have been carried out to verify the analysis method proposed in this paper. The results of the new analysis method were generally in agreement with those of the experiments.

Acceleration Effect of Self-Weight Consolidation of Dredged and Reclaimed Ground with PBD (PBD가 타설된 준설매립지반의 자중압밀 촉진효과)

  • Lee, Bum-Jun;Park, Min-Chul;Jeon, Je-Sung;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.12
    • /
    • pp.37-45
    • /
    • 2009
  • Dredging and reclamation which have been conducted steadily for creation of new coastal area have the demerit of taking a long time. Hence, a lot of researches on acceleration of self-weight consolidation have been proceeding continuously. In this paper, 30 cases of laboratory self-weight consolidation tests were conducted to understand the application of PDF method, one of the self-weight consolidation acceleration methods, to domestic dredged soils. Acceleration effect of self-weight consolidation was confirmed through comparison and analysis of completion times and settlements of self-weight consolidation for none installed case and 4 kinds of common used PBD installed cases. As a result of the tests, installation of PBD before filling is effective for time reduction of self-weight consolidation.

An Experimental Study on Consolidation Effect of Dredged and Reclaimed Ground with PBD using Seepage Pressure (침투압을 이용한 PBD 타입 준설매립 지반의 압밀 효과에 관한 실험적 연구)

  • Lee, Moo-Chul;Park, Min-Chul;Kim, Ju-Hyun;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.5
    • /
    • pp.13-24
    • /
    • 2012
  • In this study, the in-situ model test has been conducted and used to estimate and analyze consolidation behavior of the ground by using the miniature test that reconstructs economically geotechnical behavior of in-situ full scale structure. To analogize the relation among effective stress, void ratio and coefficient of permeability at the self-weight consolidation stage, the low stress seepage consolidation test has been conducted and the involution function of constitutive equation had been obtained from the result of the curve fitted seepage consolidation test result. As a result of the numerical analysis that had been conducted on the representative section using a constitute equation, final settlement was similar with those of self-weight consolidation of the centrifugal model test. But, it was more or less smaller. It seems that these trends are caused by the difference between estimated values.

A Study on Self-Weight Consolidation Characteristics in Dredged and Reclaimed Clay (준설매립 점토의 자중압밀 특성에 관한 연구)

  • Lee, Song;Yang, Tae Seon;Hwang, Koou Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.953-963
    • /
    • 1994
  • Treatment techniques of soft clay layers is needed sophisticated technology in civil engineering. Especially, dredged and reclaimed clay has high liquid limit and water content, so it is difficult to use. Now it comes to the applicability as good construction materials by predicting the behaviors. This paper is to evaluate the characteristics of sedimentation and self-weight consolidation of extremely soft clay, and is to find the way of applying model test result of reconstructing the in-situ condition to design. The consolidation properties of soft clay layers changing the size of the cell are investigated by large-scale consolidation test apparatus and the behaviors of self-weight consolidation are predicted by numerical analysis.

  • PDF

Determination of Plastic Settlement of Mortar Using Non-contact Laser Measurement Device (레이저 거리측정 실험을 통한 모르타르의 소성침하량 산정)

  • Kwak, Hyo-Gyoung;Ha, Soojun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.549-564
    • /
    • 2008
  • In this paper, the plastic settlement of mortar is analyzed on the basis of the small strain consolidation theory, and the validity of the approach is verified through the comparison with experimental data. First, the amount of settlement caused by self-weight of bulk mortar is measured using a non-contact laser measurement device and the estimation of material parameters related to the settlement of mortar is followed. In advance, another experiment is also performed on mortar with embedded reinforcement to measure the settlement distribution, and the influence of mixture proportions and cover depth on unequal settlement is analyzed. Finally, correlation studies between experimental data and settlement distribution obtained by consolidation analysis represents that the application of consolidation theory to the analysis of plastic settlement of mortar is reasonable.

Estimation of Consolidation Settlement of Soft Clay due to Selfweight by the Finite Strain Consolidation Theory (유한 변형률 압밀이론에 의한 연약점토의 자중압밀 침하선정)

  • Yu, Nam-Jae;Lee, Myeong-Uk;Lee, Jong-Ho
    • Geotechnical Engineering
    • /
    • v.11 no.3
    • /
    • pp.69-80
    • /
    • 1995
  • A numerical study was performed consolidation of soft clay with high vc difference method, based on the prover was used to estimate consolidation set Results of centrifuge model tests a using the finite strain consolidation an Analyzed results between two theories Infinitesimal theory showed more delta the finite strain consolidation theory caused by that the finite strain condo during consolidation as well as non relations.

  • PDF