• Title/Summary/Keyword: 자이로스코프 센서

Search Result 75, Processing Time 0.022 seconds

Blind Terrain Training Through a Headset Attached a Gyroscope Sensor (자이로스코프 센서를 부착한 헤드셋을 통한 시각장애인 지형교육)

  • Moon, Hyeree;Yoon, Seon-Jeong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.07a
    • /
    • pp.97-98
    • /
    • 2015
  • 본 논문에서는 자이로스코프 센서를 장착한 헤드셋 모델을 소개한다. 이 헤드셋은 교육용으로 설계 되었으며 자이로스코프 센서로 사용자의 위치 및 상태에 따라 장애물에서 송출되는 소리가 다르게 들린다. 사용자의 키 정보를 입력하면 좌우 방향은 물론 상, 하를 인식하여 충돌 반경을 더 세부적으로 조절할 수 있다. 본 논문에서 제안하는 기술을 통하여, 후천적 시각장애인의 경우 '물리적 위험'이 적은 상태에서 지형 정보와 그에 따른 행동을 학습할 수 있을 것이다.

  • PDF

Design of a Low Noise 6-Axis Inertial Sensor IC for Mobile Devices (모바일용 저잡음 6축 관성센서 IC의 설계)

  • Kim, Chang Hyun;Chung, Jong-Moon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.2
    • /
    • pp.397-407
    • /
    • 2015
  • In this paper, we designed 1 chip IC for 3-axis gyroscope and 3-axis accelerometer used for various IoT/M2M mobile devices such as smartphone, wearable device and etc. We especially focused on analysis of gyroscope noise and proposed new architecture for removing various noise generated by gyroscope MEMS and IC. Gyroscope, accelerometer and geo-magnetic sensors are usually used to detect user motion or to estimate moving distance, direction and relative position. It is very important element to designing a low noise IC because very small amount of noise may be accumulated and affect the estimated position or direction. We made a mathematical model of a gyroscope sensor, analyzed the frequency characteristics of MEMS and circuit, designed a low noise, compact and low power 1 chip 6-axis inertial sensor IC including 3-axis gyroscope and 3-axis accelerometer. As a result, designed IC has 0.01dps/${\sqrt{Hz}}$ of gyroscope sensor noise density.

Analysis and application of the dynamically tuned gyroscope (Angular velocity sensor of EOTS) (동조자이로스코프의 해석 및 응용 (전자광학추적기의 회전각속도 센서))

  • Im, Sung-Woon
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.47-56
    • /
    • 1996
  • The basic principle and characteristics of a DTG(dynamically tuned gyroscope) are presented in this paper, which is used for the detection of disturbance and for the stabilization of gimbal. An accurate model of the rate mode DTG is proposed. This model has a resonance characteristics which is more similar to the characteristics of practical systems than the conventional 2nd order system model. Therefore, this model is applicable to the general rate mode gyroscope. Some problems at using DTG for a real electro optical tracking system are discussed and a solution is described.

  • PDF

Development of a RF Excited Ring Laser Gyroscope (RF 방전을 이용한 소형 링 레이저 자이로스코프의 개발)

  • 손승현;조현주;김완식;김의찬;전갑송;김회영;윤성진;이재철
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.270-271
    • /
    • 2003
  • 링 레이저 자이로스코프는 회전각을 검출하는 센서로서 광학식이 가지는 정밀함과 견고성으로 관성항법을 비롯한 운동 제어를 필요로 하는 여러 분야에서 기존의 기계식 자이로스코프를 대체해 오고 있다. 링 레이저 자이로는 세 개 또는 네 개의 반사경으로 밀폐된 고리형 공진기를 구성하고 He-Ne 기체를 봉입하여 방전시킴으로써 서로 반대 방향으로 진행하는 레이저를 동시에 발진시키면 Sagnac 효과에 의해 공진기의 회전각에 비례하여 두 레이저의 주파수 차이가 발생하는 원리를 이용한다. (중략)

  • PDF

The Extraction Method for the G-Sensitivity Scale-Factor Error of a MEMS Vibratory Gyroscope Using the Inertial Sensor Model (관성센서 오차 모델을 이용한 진동형 MEMS 자이로스코프 G-민감도 환산계수 오차 추출 기법)

  • Park, ByungSu;Han, KyungJun;Lee, SangWoo;Yu, MyeongJong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.6
    • /
    • pp.438-445
    • /
    • 2019
  • In this paper, we present a new approach to extract the g-sensitivity scale-factor error for a MEMS gyroscope. MEMS gyroscopes, based on the use of both angular momentum and the Coriolis effect, have a g-sensitivity error due to mass unbalance. Generally, the g-sensitivity error is not considered in general use of gyroscopes, but it deserves our attention if we are to develop for tactical class performance and reliability. The g-sensitivity error during vehicle flight increases navigation error; so it must be analyzed and compensated for the use of MEMS IMU for high dynamics vehicle systems. Therefore, we analyzed how to extract the g-sensitivity scale-factor error from the inertial sensor error model. Furthermore we propose a new method to extract the g-sensitivity error using flight motion simulator. We verified our proposed method with experimental results.

Dynamic Analysis and Evaluation of a Microgyroscope using Symmetric 2DOF Planar Resonator (대칭형 2자유도 수평 공진기를 이용한 마이크로 자이로스코프의 동특성 해석 및 평가)

  • Hong, Yoon-Shik;Lee, Jong-Hyun;Kim, Soo-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • Conventional microgyroscopes of vibrating type require resonant frequency tuning of the driving and sensing modes to achieve high sensitivity. These tuning conditions depend on each fabricated microgyroscopes, even though the microgyroscopes are identically designed. A new micromachined resonator, which is applicable to microgyroscopes with self-toning characteristics, is presented. Since the laterally driven two degrees of freedom (2DOF) resonator was designed as a symmetric structure with identical stiffness in two orthogonal axes, the resonator is applicable to vibrating microgyroscopes, which do not need mode tuning. A dynamic model of the resonator was derived considering gyroscopic application. The dynamic model was evaluated by experimental comparison with fabricated resonators. The microgyroscopes were fabricated using a simple 2-mask-process of a single polysilicon layer deposited on an insulator layer. The feasibility of the resonator as a vibrating microgyroscopes with self-tuning capability is discussed. The fabricated resonators of a particular design have process-induced non-uniformities that cause different resonant frequencies. For several resonators, the standard deviations of the driving and sensing frequencies were as high as 1232Hz and 1214Hz, whereas the experimental average detuning frequency was 91.75Hz. The minimum detuned frequency was 68Hz with $0.034mVsec/^{\circ}$ sensitivity. The sensitivity of the microgyroscopes was low due to process-induced non-uniformity; the angular rate bandwidth, however, was wide. This resonator could be successfully applicable to a vibrating microgyroscopes with high sensitivity, if improvements in uniformity of the fabrication process are achieved. Further developments in improved integrated circuits are expected to lower the noise level even more.

  • PDF

New Angular Velocity Pick-off Method for Dynamically Tuned Gyroscope (동조자이로스코프의 새로운 각속도 검출 방법)

  • Ma, Jin-Suk;Lee, Kwang-Il;Kim, Woo-Hyun;Kwon, Woo-Hyen;Im, Sung-Woon;Byun, Seung-Whan;Cheon, Ho-Jeong
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.139-147
    • /
    • 1999
  • In this paper, we present the new angular velocity pick-off method for DTG (dynamically tuned gyroscope) which is widely used in various inertial navigation systems and motion control systems. In case of the external angular velocity input, the proposed scheme can make a smaller tilt-angle rather than that of conventional PI method in the transient and steady state because it has an additional inner rebalance loop with a mathematical model of the real gyroscope. So, without any mechanical redesign of the DTG, its dynamic range can be enlarged by the proposed method. The theoretical analysis and simulation model of DTG with the proposed scheme are given. Finally, the proposed scheme is verified.

  • PDF

Interferometric Measurement of Flexure Error in a Ring Laser Gyroscope (간섭계를 이용한 링레이저 자이로스코프의 플렉셔 오차 측정)

  • 김정주;이동찬;이재철;조민식;권용율
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.272-273
    • /
    • 2003
  • 링레이저 자이로스코프(Ring Laser Gyroscope-이하 RLG)는 비행기, 유도무기, 선박, 지상무기 등의 관성항법장치(Inertial Navigation System)에 사용되는 각속도 센서로서 항체의 위치와 자세 정보를 제공하는 핵심 구성품 중의 하나이다. 각속도 검출 원리는 삼각형 또는 사각형의 공진기에 He과 Ne을 혼합한 이득매질을 사용하여 서로 반대방향으로 회전하는 두 개의 레이저 빔을 발생시켜서 Sagnac 효과에 의해 외부의 회전 입력을 받을 때 서로 다른 광 경로의 차이로 인한 두 빔의 간섭으로 회전각을 검출한다. (중략)

  • PDF

Vibrotactile Space Mouse (진동촉각 공간 마우스)

  • Park, Jun-Hyung;Choi, Ye-Rim;Lee, Kwang-Hyung;Back, Jong-Won;Jang, Tae-Jeong
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.337-341
    • /
    • 2008
  • This paper presents a vibrotactile space mouse which use pin-type vibrotactile display modules and a gyroscope chip. This mouse is a new interface device which is not only an input device as an ordinary space mouse but also a tactile output device. It consists of a space mouse which use gyroscope chip and vibrotactile display modules which have been developed in our own laboratory. Lately, by development of vibrotactile display modules which have small size and consume low power, vibrotactile displays are available in small sized embedded systems such as wireless mouses or mobile devices. Also, development of new sensors like miniature size gyroscope by MEMS technology enables manufacturing of a small space mouse which can be used in the air not in a plane. The vibrotactile space mouse proposed in this paper recognizes motion of a hand using the gyroscope chip and transmits the data to PC through Bluetooth. PC application receives the data and moves pointer. Also, 2 by 3 arrays of pin-type vibrotactile actuators are mounted on the front side of the mouse where fingers of a user's hand contact, and those actuators could be used to represent various information such as gray-scale of an image or Braille patterns for visually impared persons.

  • PDF

Detection of Repetition Motion Using Neural network (신경망을 이용한 반복운동 검출)

  • Yoo, Byeong-hyeon;Heo, Gyeong-yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1725-1730
    • /
    • 2017
  • The acceleration sensor and the gyroscopic sensor are used as representative sensors to detect repetitive motion and have been used to analyze various sporting components. However, both sensors have problems with noise sensitivity and accumulation of errors. There have been attempts to use two sensors together to overcome hardware problems. The complementary filter has shown successful results in mitigating the problems of both sensors by minimizing the disadvantages of accelerometer and gyroscope sensors and maximizing their advantages. In this paper, we proposed a modified method using neural network to reduce variable. The neural network is an algorithm that can precisely measure even in unexpected environments or situations by pre-learning the number of various cases. The proposed method applies a Neural Network by dividing the repetitive motion into three sections, the first, the middle and the end. As a result, the recognition rate is 96.35%, 98.77%, 96.92% and the accuracy is 97.18%.