• Title/Summary/Keyword: 자율 안정화

Search Result 22, Processing Time 0.024 seconds

자율운항선박 육상원격제어시스템 테스트 결과 및 안정화 방안

  • 노화섭;김대정;임정빈
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.178-179
    • /
    • 2023
  • 자율운항선박 육상원격제어시스템 개발에 따른 각 단위시스템의 기능 및 통합시스템의 성능을 토대로 실습선과 연계하여 테스트결과를 공유하고 그 내용을 분석함으로써 시스템 안정화 방안을 제안하고자 한다.

  • PDF

Walking and Stabilization Algorithm of a Biped Robot on the Uneven Ground (이족보행로봇의 비평탄지형 보행 및 자세 안정화 알고리즘)

  • 김용태;노수희;이희진
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.71-74
    • /
    • 2004
  • 이족보행로봇을 실생활에 적용하기 위해서는 비평탄지형에서의 안정적인 자율보행 및 자세 안정화는 반드시 필요한 기능이다. 본 논문에서는 계단, 경사지형, 다양한 형태의 장애물에 대처가능한 이족보행로봇의 기구설계 및 원격제어 가능한 제어시스템 구현에 대하여 설명하고, 이러한 비평탄지형에서 발에 부착된 적외선센서 및 FSR센서, 머리에 장착될 카메라를 사용한 안정된 자율보행 알고리즘을 제안하였다. 또한 발바닥에 장착된 FSR센서를 사용하여 외부에서 들어오는 외력에 대처하는 자세안정화 알고리즘도 제안하였다. 제안한 자율보행 및 자세안정화 알고리즘들은 이족보행로봇을 제작하여 다양한 환경에서 실험으로 검증하였다.

  • PDF

Analysis of Take-over Time and Stabilization of Autonomous Vehicle Using a Driving Simulator (드라이빙 시뮬레이터를 이용한 자율주행자동차 제어권 전환 소요시간 및 안정화 특성 분석)

  • Park, Sungho;Jeong, Harim;Kwon, Cheolwoo;Kim, Jonghwa;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.4
    • /
    • pp.31-43
    • /
    • 2019
  • Take-overs occur in autonomous vehicles at levels 3 and 4 based on SAE. For safe take-over, it is necessary to set the time required for diverse drivers to complete take-over in various road conditions. In this study, take-over time and stabilization characteristics were measured to secure safety of take-over in autonomous vehicle. To this end, a virtual driving simulator was used to set up situations similar to those on real expressways. Fifty drivers with various sexes and ages participated in the experiment where changes in traffic volume and geometry were applied to measure change in takeover time and stabilization characteristics according to various road conditions. Experimental results show that the average take-over time was 2.3 seconds and the standard deviation was 0.1 second. As a result of analysis of stabilization characteristics, there was no difference in take-over stabilization time due to the difference of traffic volume, and there was a significant difference by curvature changes.

Vertical Channel Damping Loop Design for Autonomous Vehicle with Altitude Controller (고도유지 제어기를 포함한 자율이동체의 관성항법 알고리듬 수직채널 안정화루프 설계)

  • Shim, Han-Joon;Kim, Young-Jin;Lee, Jae-Hong;Ra, Won-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1379-1380
    • /
    • 2015
  • 본 논문에서는 고도유지 제어기를 포함한 자율이동체의 수직 채널 안정화 루프를 제안한다. 제안된 방법은 일반적으로 널리 사용되고 있는 고전적인 수직채널 댐핑루프와 달리 고도정보와 함께 속도정보를 이용하여 궤적의 고도변화가 큰 이동체에 대하여 빠른 응답특성을 갖도록 한다. 루엔-버거(Luenberger) 관측기 구조를 이용함으로써 속도정보를 활용한 수직채널 안정화루프의 체계적 설계가 가능함을 보인다. 제안된 설계 방법에 대하여 모의실험을 통해 제안한 기법의 성능 및 유용성을 확인한다.

  • PDF

Analysis of the Influence of Road·Traffic Conditions and Weather on the Take-over of a Conditional Autonomous Vehicle (도로·교통 조건 및 기상 상황이 부분 자율주행자동차의 제어권전환에 미치는 영향 분석)

  • Park, Sungho;Yun, YongWon;Ko, Hangeom;Jeong, Harim;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.235-249
    • /
    • 2020
  • The Ministry of Land, Infrastructure and Transport established safety standards for Level 3 autonomous vehicles for the first time in the world in December 2019, and specified the safety standards for conditional autonomous driving systems. Accordingly, it is necessary to analyze the influence of various driving environments on take-over. In this study, using a driving simulator, we investigated how traffic conditions and weather conditions affect take-over time and stabilization time. The experimental procedure was conducted in the order of preliminary training, practice driving, and test driving, and the test driving was conducted by dividing into a traffic density and geometry experiment and a weather environment experiment. As a result of the experiment, it was analyzed that the traffic volume and weather environment did not affect the take-over time and take-over stabilization time, and only the curve radius affects take-over stabilization time.

Methods for Stabilizing QoS in Mobile Cloud Computing (모바일 클라우드 컴퓨팅을 위한 QoS 안정화 기법)

  • La, Hyun Jung;Kim, Soo Dong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.8
    • /
    • pp.507-516
    • /
    • 2013
  • Mobile devices have limited computing power and resources. Since mobile devices are equipped with rich network connectivity, an approach to subscribe cloud services can effectively remedy the problem, which is called Mobile Cloud Computing (MCC). Most works on MCC depend on a method to offload functional components at runtime. However, these works only consider the limited verion of offloading to a pre-defined, designated node. Moveover, there is the limitation of managing services subscribed by applications. To provide a comprehensive and practical solution for MCC, in this paper, we propose a self-stabilizing process and its management-related methods. The proposed process is based on an autonomic computing paradigm and works with diverse quality remedy actions such as migration or replicating services. And, we devise a pratical offloading mechanism which is still in an initial stage of the study. The proposed offloading mechanism is based on our proposed MCC meta-model. By adopting the self-stabilization process for MCC, many of the technical issues are effectively resolved, and mobile cloud environments can maintain consistent levels of quality in autonomous manner.

Analyzing the Impact of Changes in the Driving Environmenton the Stabilization Time of Take-over in Conditional Automation (조건부 자율주행시 주행환경 변화에 따른 제어권 전환 안정화 시간 영향 분석)

  • Sungho Park;Kyeongjin Lee;Jungeun Yoon;Yejin Kim;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.6
    • /
    • pp.246-263
    • /
    • 2023
  • The stabilization time of take-over refers to the time it takes for driving to stabilize after the take-over. Following a take-over request from an automated driving system, the driver must become aware of the road driving environment and perform manual driving, making it crucial to clearly understand the relationship between the driving environment and stabilization time of take-over. However, previous studies specifically focusing on stabilization time after take-over are rare, and research considering the driving environment is also lacking. To address this, our study conducted experiments using a driving simulator to observe take-over transitions. The results were analyzed using a liner mixed model to quantitatively identify the driving environment factors affecting the stabilization time of take-over. Additionally, coefficients for stabilization time based on each influencing factor were derived.

Autonomous Parking of Car-Like Mobile Robot Using Docking Formation (도킹 포메이션을 이용한 차량형 이동 로봇의 자율 주차)

  • Kwon, Ji-Wook;Kim, Jin Hyo;Seo, Jiwon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.180-189
    • /
    • 2014
  • For a autonomous parking of unmanned car, this paper proposes a posture regulation algorithm of a car-like mobile robot, which is supported by a docking formation and a feedback linearization control law. Unlike the previous researches based on a path-planning and optimization algorithms, the autonomous car implemented the proposed autonomous parking algorithm can be parked without much computational burden and a high performance processor. Stability of the proposed docking formation and feedback linearization control law are analyzed and performance of the proposed algorithm is shown by implementing to the simulations with six scenarios and an actual car in the experiment place.

Impacts of Automated Vehicles on Traffic Flow Changes (자율주행자동차 도입으로 인한 교통흐름 변화 분석)

  • Jung, Seung weon;Moon, Young jun;Lee, Sung Yeol;Hwang, Kee Yeon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.6
    • /
    • pp.244-257
    • /
    • 2017
  • Traffic congestion occurs from drivers' human factors such as driver reaction time, reckless lane change, and inexperienced driving. When Automated Vehicles are introduced, human factors are excluded, resulting in increased average vehicle speed, stabilizing traffic flow, and increasing road capacity. This study analyzed traffic flow changes through traffic volume-speed-density plots, and increased road capacity due to Automated Vehicles. As a result of the analysis, when rate of automated vehicles gests higher, the traffic flow became stable. Additionally, it was analyzed that when all vehicles were automated, the road capacity increased by about 120 %. It is expected that there will be a positive expectation in terms of traffic congestion and traffic demand management due to the introduction of Automated Vehicles.

자율운항선박 원격제어시스템 안정화를 위한 개선방안

  • 서원복;박득진;임정빈
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.180-181
    • /
    • 2023
  • 선박 원격제어를 위해 시스템은 선박의 항해가 종료될 때 까지 중단없이 운영되어야 한다. 선박원격제어를 시스템의 중단 원인 및 해결방안 도출하기위해 실습선을 대상으로 원격제어 시스템을 시험운영한 결과 네트워크 단절 및 데이터누락이 현상이 일어나는 것을 발견하였다.

  • PDF