• Title/Summary/Keyword: 자유유동 난류강도

Search Result 25, Processing Time 0.017 seconds

Effect Analysis of Relative Position of Blade on Performance of Micro Gravitational Vortex Turbine in Free Water Surface (자유수면에서 마이크로 중력식 와류 수차 성능에 블레이드의 상대위치 변화가 미치는 영향 분석)

  • Choi, In-Ho;Kim, Jong-Woo;Chung, Gi-Soo
    • Journal of Wetlands Research
    • /
    • v.24 no.3
    • /
    • pp.196-203
    • /
    • 2022
  • This paper contributed to the understanding of the effect of the blade relative position on performance of micro gravitational vortex turbine in free water surface. In a constant vortex flow, the rotation, voltage and current of micro vortex water turbine were measured according to the position change of the blade installed at the relative vortex height (y/hv) ranging from 0 to 0.778 below the free water surface. The flow rate ranged from 0.0063 to 0.00662 m3/s. The results of the experiments showed that relative positions of the blade affected the performance of vortex water turbine because the distributions of incoming flow velocity and turbulence intensity were changed. The highest amount of the energy generated by the vortex water turbine occurred in the relative vortex height ranging from 0.111 to 0.222. The output power at the relative vortex height of 0.111 was about 2.4 times larger than the relative vortex height of 0.588 below the free water surface.

Development of k-$\epsilon$ model for prediction of transition in flat plate under free stream with high intensity (고난류강도 자유유동에서 평판 경계층 천이의 예측을 위한 난류 모형 개발)

  • Baek, Seong Gu;Lim, Hyo Jae;Chung, Myung Kyoon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.337-344
    • /
    • 2000
  • A modified k-$\epsilon$ model is proposed for calculation of transitional boundary layer flows. In order to develop the eddy viscosity model for the problem, the flow is divided into three regions; namely, pre-transition region, transition region and fully turbulent region. The pre-transition eddy-viscosity is formulated by extending the mixing Length concept. In the transition region, the eddy-viscosity model employs two length scales, i.e., pre-transition length scale and turbulent length scale pertaining to the regions upstream and the downstream, respectively, and a university model of stream-wise intermittency variation is used as a function bridging the pre-transition region and the fully turbulent region. The proposed model is applied to calculate three benchmark cases of the transitional boundary layer flows with different free-stream turbulent intensity ( $1\%{\~}6\%$ ) under zero-pressure gradient. It was found that the profiles of mom velocity and turbulent intensity, local maximum of velocity fluctuations, their locations as well as the stream-wise variation of integral properties such as skin friction, shape factor and maximum velocity fluctuations are very satisfactorily Predicted throughout the flow regions.

  • PDF

On the Viscous Flow Around Breaking Waves Generated by a Submerged Cylinder(Part 1 : Wave Pattern and Surface Pressure) (몰수실린더에 의하여 생성되는 쇄파주위 점성유동의 고찰 (제1부 : 파형 및 압력분포))

  • B.S. Hyun;Y.H. Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.1
    • /
    • pp.82-90
    • /
    • 2000
  • An experimental study has been carried out at circulating water channel to investigate the non-breaking and breaking waves generated by a submerged circular cylinder steadily moving under the free surface. Free surface profiles and pressure distributions on cylinder surface were measured at various submerged depths of cylinder. They were complemented by the measurements of velocities, head losses and turbulence intensities in the wakes of body and "breaker". Part 1 of this three-part paper describes the experimental arrangement and the patterns of wave profile and pressure distribution at various depths of submergence. These databank contributions are of special interest in traditional ship hydrodynamics. In Part 2, special focuses are made to elucidate the viscous and turbulent aspects of flow field. Finally Part 3 will deal with the visualization of instantaneous vortical flow to study the mutual interaction between vorticies shedded from the free-surface and the cylinder using a Particle Image Velocimetry.

  • PDF

PIV Measurements of Wake behind a KRISO 3600TEU Container Ship Model (PIV를 이용한 KRISO 3600TEU 컨테이너선모형선의 반류 측정 및 해석)

  • Sang-Joon Lee;Min-Seok Koh;Choung-Mook Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.3
    • /
    • pp.48-56
    • /
    • 2002
  • The flow characteristics around KRISO 3600TEU container ship model have been experimentally investigated in a circulating water channel. The instantaneous velocity vectors were measured using 2-frame PIV measurement system. The mean velocity fields and turbulent statistics including turbulent kinetic energy and vorticity were obtained by ensemble-averaging 400 instantaneous velocity fields. The free stream velocity was fixed at 0.6m/s and the corresponding Reynolds number was $9{\times}10^5$. The test sections were divided into two regions, three transverse sections of the wake region(Station -0.5767, -1, -3) and five longitudinal sections of the wake((Z/(B/2)=0, 0.1, 0.2, 0.4, 0.6). In the wake region, large-scale longitudinal vortices of nearly same strength are symmetric with respect to the wake centerline and a relatively weak secondary vortex is formed near the waterline. With going downstream, the strength of longitudinal vortex is decreased and the wake region expands.

Heat Transfer and Flow Measurements on the Turbine Blade Surface (터빈 블레이드 표면과 선형익렬에서의 열전달 및 유동측정 연구)

  • Lee, Dae Hee;Sim, Jae Kyung;Park, Sung Bong;Lee, Jae Ho;Yoon, Soon Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.567-576
    • /
    • 1999
  • An experimental study has been conducted to investigate the effects of the free stream turbulence intensity and Reynolds number on the heat transfer and flow characteristics In the linear turbine cascade. Profiles of the time-averaged velocity, turbulence intensity, and Reynolds stress were measured in the turbine cascade passage. The static pressure and heat transfer distributions on the blade suction and pressure surfaces were also measured. The experiments were made for the Reynolds number based on the chord length, Rec = $2.2{\times}10^4$ to $1.1{\times}10^5$ and the free stream turbulence intensity, $FSTI_1$ = 0.6% to 9.1 %. The uniform heat flux boundary condition on the blade surface was created using the gold film Intrex and the surface temperature was measured by liquid crystal, while hot wire probes were used for the flow measurements. The results show that the free stream turbulence promotes the boundary layer development and delays the flow separation point on the suction surface. It was found that the boundary layer flows on the suction surface for all Reynolds numbers tested with $FSTI_1$ = 0.6% are laminar. It was also found that the heat transfer coefficient on the blade surface increases as the free stream turbulence intensity increases and the flow separation point moves downstream with an increasing Reynolds number. The results of skin friction coefficients are in good agreement with the heat transfer results in that for $FSTI_1{\geq}2.6%$, the turbulent boundary layer separation occurs.