• Title/Summary/Keyword: 자유성형 제작 기술

Search Result 7, Processing Time 0.024 seconds

Design and Fabrication of Nasal-Implant-Shaped Scaffold and Regeneration of Nasal Cartilage Tissue for Rhinoplasty (코 성형을 위한 코 보형물 형태의 인공지지체 설계 및 제작과 코 연골조직의 재생)

  • Jung, Jin-Woo;Jang, Jin-Ah;Shim, Jin-Hyung;Kim, Sung-Won;Cho, Dong-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.11
    • /
    • pp.1111-1117
    • /
    • 2012
  • Implants for rhinoplasty should ideally be biocompatible and possess long-term stability after implantation. Silicone implants are most widely used for rhinoplasty. However, these implants suffer from problems related to high extrusion and infection rates. To minimize these complications, we propose a novel augmentation rhinoplasty technique using tissue engineering. To demonstrate its feasibility, a nasal-implant-shaped scaffold was designed using commercialized CAD software and fabricated using a Multi-head Deposition System, which is a solid freeform fabrication system that dispenses material. In vitro cell proliferation and chondrogenic differentiation tests were carried out using nasal septal chondrocytes.

A Study of Optimum Molding Condition of Aspheric Glass Lens(I) ; Annealing Condition Effect (비구면 Glass렌즈 최적 성형조건 연구(I) ; 서냉조건효과)

  • Cha, Du-Hwan;Kim, Hyeon-Uk;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2006.07a
    • /
    • pp.197-198
    • /
    • 2006
  • 본 연구에서 개발하는 성형렌즈는 그림1과 같이 한쪽 면이 비구면인 평볼록 형상이다. Glass렌즈의 고온압축성형을 위해서는 초정밀 가공기술로 제작된 성형Mold가 필요하며, Mold재질에 따른 성형기술의 확립이 필수적이다. 또한, 성형Mold의 표면과 융착반응이 없는 Glass소재가 요구된다. 본 실험을 위한 성형Mold는 코발트(Co) 함량 0.5 %의 초경합금(WC; 일본, Everloy社, 002K)을 초정밀 연삭가공하여 제작하였다. Glass소재는 전이점(Transformation Point; Tg) $572\;^{\circ}C$,항복점(Yielding Point; At) $630\;^{\circ}C$의 열적 특성을 갖는 K-BK7(일본, Sumita社)을 사용하였으며, d선에서 굴절률 및 아베수는 각각 1.51633, 64.1이다. 비구면 Glass렌즈 성형은 GMP(Glass Molding Press; 일본, Sumitomo社, Nano Press-S)장비를 사용하여 성형온도 $625\;^{\circ}C$, 서냉온도 $550\;^{\circ}C$로 고정하고 성형압력를 200-800 N 범위에서 변화시켰다. 표 1에 성형변수로 사용한 서냉속도와 서냉전환온도 조건을 나타낸다. 표1과 같이 각 서냉조건별로5장의 렌즈를 성형 후 특성값이 평균치에 가까운 3장을 선별하여 그 특성을 비교하였다. 각 조건에 따른 성형렌즈의 형상정도(일본, Panasonic社, UA3P, 자유곡면형상측정기), 두께(일본, Mitutoyo社, MDC-25M, 마이크로메터), 굴절률(일본, Shimatus社, KPR-200, 정밀굴절률측정기) 및 MTF[해상도](독일, Trioptics社, Image Master HR, MTF-Field)를 측정하여 각각의 광학적 특성을 비교 평가하였다. 비구면 Glass렌즈 성형장비와 형상측정기를 그림 2, 3에 각각 나타낸다.

  • PDF

Study on the Surface Characterization of Structure made of Polyamide 12 manufactured by Additive Manufacturing Process (적층 기법으로 제작한 polyamide 12 소재 적용 구조물 표면 특성 분석 연구)

  • Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.481-487
    • /
    • 2019
  • Additive manufacturing is a state-of-the-art manufacturing process technology in which three-dimensional structures are fabricated by laminating two-dimensional sections of a structure using various materials such as plastic, ceramics, and metals. The additive manufacturing technology has the advantage of high design freedom, while the surface property (roughness) of the finished product varies depending on the process conditions, which necessitates performing a post-process after the products are manufactured. In this study, the surface roughness of a structure made of polyamide 12, which was manufactured by SLS (Selective Laser Sintering) and MJF (Multi Jet Fusion) process was compared. The processing condition was classified by the building orientation of structure as 0, 45, and 90 degrees, which is the angle between the analytical surface and the horizontal plane of the fabrication platform. Structures with a hole of various diameters ranging from 1mm to 10mm were manufactured and the hole characteristics (ratio of hole depth to diameter) and results of the specimens were compared. As a result of the surface characteristics analysis, the surface roughness value of the specimens manufactured with a building orientation of $45^{\circ}$ was the highest in both technologies. In the case of the through-hole structure fabrication, the shape was maintained with 5mm and 10mm diameter holes regardless of the building orientation, although the hole forming was difficult for the smaller holes.

Design and Manufacturing Technology of Heat Exchanger in Air Compressor for Railroad Vehicle by 3D Printing Process (3D 프린팅 적용 철도차량용 공기압축기의 열교환기 설계 및 제작 기술 연구)

  • Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.802-809
    • /
    • 2017
  • 3D printing technology is a manufacturing process for products, in which polymer and metal materials are laminated to form structures. It is advantageous for manufacturing parts requiring a high degree of design freedom and functionality. In addition, it would be a suitable technology for the production of parts for railway vehicles in the future, due to the need to produce parts in small quantities. In order to fully exploit the advantages of 3D printing technology, it is necessary to consider the process characteristics during the design of the product. In this study, the redesign and manufacturing technology of the product considering the performance and process conditions were studied for the heat exchanger in the air compressor of railway vehicles, as a trial application of the 3D printing technique. First of all, the design concept to improve the performance of the heat exchanger was defined, and the design range was specified to satisfy the performance of the present heat exchanger analyzed experimentally. Then, the detailed design was revised considering the characteristics of the metal 3D printing process, such as the manufacturing restrictions and production time. Based on the final design, the product was fabricated by the 3D printing process using aluminum material, and it was confirmed that the dimensional accuracy was satisfied. The weight of the final product was reduced by 41% compared with the existing products. The results of this study will make it possible to develop an efficient product design process for 3D printing technology.

Fabrication of 3D PCL/PLGA/TCP Bio-scaffold using Multi-head Deposition System and Design of Experiment (다축 적층 시스템과 실험 계획법을 이용한 3차원 PCL/PLGA/ICP 바이오 인 공지지체 제작)

  • Kim, Jong-Young;Yoon, Jun-Jin;Park, Eui-Kyun;Kim, Shin-Yoon;Cho, Dong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.1
    • /
    • pp.146-154
    • /
    • 2009
  • In recent tissue engineering field, it is being reported that the fabrication of 3D scaffolds having high porous and controlled internal/external architectures can give potential contributions in cell adhesion, proliferation and differentiation. To fabricate these scaffolds, various solid free-form fabrication technologies are being applied. The solid free-form fabrication technology has made it possible to fabricate solid free-form 3D microstructures in layer-by-layer manner. In this research, we developed a multi-head deposition system (MHDS) and used design of experiment (DOE) to fabricate 3D scaffold having an optimized internal/external shape, Through the organization of experimental approach using DOE, the fabrication process of scaffold, which is composed of blended poly-caprolactone (PCL), poly-lactic-co-glycolic acid (PLGA) and tricalcium phosphate (TCP), is established to get uniform line width, line height and porosity efficiently Moreover, the feasibility of application to the tissue engineering of MHDS is demonstrated by human bone marrow stromal cells (hBMSCs) proliferation test.

Numerical Analysis of Resin Filling Process for a Molded Dry-type Potential Transformer (몰드형 건식 계기용 변압기 제작을 위한 수지 충진 해석 연구)

  • Kim, Moosun;Jang, Dong Uk;Kim, Seung Mo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.511-517
    • /
    • 2016
  • Current oil-type potential transformers for trains are filled with insulating oil, which could have problems like explosions due to rising inner pressure during train operation. Therefore, mold and dry-type potential transformers are being developed to prevent explosions. One problem in manufacturing mold-type transformers is preventing void formation around the coiled core inside the mold during epoxy filling, which could cause an electrical spark. Micro voids can remain in the resin after filling, and macro voids can occur due to the structure shape. A transformer that is being developed has a cavity at the junction of the core and the coil for better performance, and when highly viscous epoxy flows inside the cavity channel, macro voids can form inside it. Therefore, in this study, the free-surface flow of the mold filling procedure was analyzed numerically by applying the VOF method. The results were used to understand the phenomena of void formation inside the cavity and to modify the process conditions to reduce voids.

The Effect of Stacking Fault on Thermoelectric Property for n-type SiC Semiconductor (N형 SiC 반도체의 열전 물성에 미치는 적층 결함의 영향)

  • Pai, Chul-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.13-19
    • /
    • 2021
  • This study examined the effects of stacking faults on the thermoelectric properties for n-type SiC semiconductors. Porous SiC semiconductors with 30~42 % porosity were fabricated by the heat treatment of pressed ��-SiC powder compacts at 1600~2100 ℃ for 20~120 min in an N2 atmosphere. XRD was performed to examine the stacking faults, lattice strain, and precise lattice parameters of the specimens. The porosity and surface area were analyzed, and SEM, TEM, and HRTEM were carried out to examine the microstructure. The electrical conductivity and the Seebeck coefficient were measured at 550~900 ℃ in an Ar atmosphere. The electrical conductivity increased with increasing heat treatment temperature and time, which might be due to an increase in carrier concentration and improvement in grain-to-grain connectivity. The Seebeck coefficients were negative due to nitrogen behaving as a donor, and their absolute values also increased with increasing heat treatment temperature and time. This might be due to a decrease in stacking fault density, i.e., a decrease in stacking fault density accompanied by grain growth and crystallite growth must have increased the phonon mean free path, enhancing the phonon-drag effect, leading to a larger Seebeck coefficient.