• Title/Summary/Keyword: 자원기반학습

Search Result 448, Processing Time 0.028 seconds

A Study on the Influences of Enterprise Organizational Effectiveness in Learning Organization Activity. (학습조직활동이 조직 유효성에 미치는 영향)

  • Yoo, Ji-Chul
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.4
    • /
    • pp.287-292
    • /
    • 2009
  • 지식기반경제사회에서 지식을 습득하고 행동할 수 있는 능력을 갖춘 인적자원이야말로 기업의 핵심경쟁력 이라는 것은 자명한 것이다. 디지털시대로 특징지어지는 21세기에는 지식이야말로 기업의 경쟁우위에 중요한 영향을 미칠 것이다. 기업은 디지털 시대에 있어서 경쟁우위를 확보하기 위하여 학습조직의 활성화는 기업의 경쟁에 있어서 중요한 핵심요소가 된다. 그러나 대부분 기업들이 학습활동을 하면서도 학습조직의 활성화가 기업에 어떠한 영향을 미치는지에 대한 분석은 미흡한 실정이다. 따라서 본 연구는 학습조직의 활성화가 기업조직의 유효성에 미치는 영향에 관한 분석을 실시하였다. 연구의 결과 기업학습조직 활성화에 지속적 학습, 시스템적 사고, 조직몰입 등이 기업조직의 유효성에 유의하게 판단되었다.

Korean Dependency Parsing Based on Learning Weights of Features (자질 가중치 학습을 이용한 한국어 의존파싱)

  • Kim, Young-Tae;Ra, Dong-Yul;Lim, SooJong
    • Annual Conference on Human and Language Technology
    • /
    • 2010.10a
    • /
    • pp.63-67
    • /
    • 2010
  • 본 논문에서는 자질(feature)의 가중치를 학습하여 이용하는 기계학습 기반 한국어 의존 파싱 기법을 소개한다. 이를 위하여 모든 가능한 의존관계에 대하여 각 의존관계마다 일정한 수의 자질을 생성한다. 자질마다 가중치에 의하여 그 중요도를 나타낸다. 자질의 가중치 값은 의존관계가 태깅된 구문구조 학습 말뭉치를 이용하여 학습한다. 이를 위해 본 논문에서는 간단한 가중치 기계학습 기법을 제시한다. 실험을 위한 언어 자원으로는 구구조부착 세종말뭉치를 변환하여 구한 의존관계 부착 말뭉치를 사용하였다. 실험 결과 약 86.5%의 정확률을 가지는 의존파싱이 가능함을 관찰하였다.

  • PDF

A Theoretical Review and Trial Application of the 'Resources-Based View' (RBV) as an Alternative Cognitive Theory (대안적 인지 이론으로서 '자원 기반 관점'에 대한 이론적 고찰과 시험 적용)

  • Oh, Phil Seok
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.6
    • /
    • pp.971-984
    • /
    • 2015
  • The purpose of this study is twofold: to theoretically review the 'resources-based view' (RBV) developed by D. Hammer and his colleagues as an alternative cognitive theory and to illustrate the usefulness of the theory by applying it to interpret a science learning activity in which undergraduate students worked together to construct a model of the seasons. The theoretical review was based on the exploration of relevant literature and dealt mainly with three types of resources: conceptual, epistemological, and practical resources. The trial application revealed that scientific models have been developed through the combination of different pieces of conceptual resources activated from participants, rather than emerging as unitary wholes. However, all the activated resources were not included into a model, and some of the conceptual resources acted as constraints to constructing a scientific model. The implications included that science educators should be attentive and responsive to students' resources and help them use the resources productively to learn science.

Development of Security Anomaly Detection Algorithms using Machine Learning (기계 학습을 활용한 보안 이상징후 식별 알고리즘 개발)

  • Hwangbo, Hyunwoo;Kim, Jae Kyung
    • The Journal of Society for e-Business Studies
    • /
    • v.27 no.1
    • /
    • pp.1-13
    • /
    • 2022
  • With the development of network technologies, the security to protect organizational resources from internal and external intrusions and threats becomes more important. Therefore in recent years, the anomaly detection algorithm that detects and prevents security threats with respect to various security log events has been actively studied. Security anomaly detection algorithms that have been developed based on rule-based or statistical learning in the past are gradually evolving into modeling based on machine learning and deep learning. In this study, we propose a deep-autoencoder model that transforms LSTM-autoencoder as an optimal algorithm to detect insider threats in advance using various machine learning analysis methodologies. This study has academic significance in that it improved the possibility of adaptive security through the development of an anomaly detection algorithm based on unsupervised learning, and reduced the false positive rate compared to the existing algorithm through supervised true positive labeling.

Methods of Transforming the Sejong Treebank to Improve Parser Performance (구문 분석기 성능 향상을 위한 세종 트리뱅크 변환 방법)

  • Choi, Dong-Hyun;Park, J.Y.;Lim, K.T.;Hahm, Y.G.;Choi, K.S.
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.342-344
    • /
    • 2012
  • 세종 트리뱅크는 현존하는 한국어 트리뱅크 중 비교적 최근에 구축되었고 그 규모가 가장 큰 자원이다. 세종 트리뱅크는 어절을 기반으로 구축되어 있어, 어절의 개념이 없는 영어를 기반으로 연구 개발된 대다수의 구문분석기를 학습하는 데 이용될 경우 모호성이 발생된다. 본 논문에서는 세종 트리뱅크를 변환하여 학습 시 모호성을 줄이고, 이를 통해 학습된 구문 분석기의 성능을 높이는 방법에 대하여 서술한다. 실험 결과에 따르면 본 논문에서 제시된 변환 결과를 통해 최소 2 %에서 최대 4 % 정도의 성능 향상 효과를 얻을 수 있었다.

Elementary Educational Contents Retrieval System Using Semantic Web Technology (시맨틱 웹 기술을 활용한 초등학교 학습자료 검색 시스템)

  • Lee, Hee-Kyoung;Jun, Woo-Chun
    • 한국정보교육학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.622-630
    • /
    • 2004
  • 웹의 활용이 보편화되면서 웹을 통한 자료의 검색이 증가하고 있으나, 웹상의 방대한 자료 중에서 학습자가 꼭 필요한 학습자료를 찾는 것은 쉬운 일이 아니다. 검색엔진을 이용하면 원하는 정보를 어느 정도 찾을 수 있으나 사용자 의존적인 검색엔진의 특성상 결과가 만족스럽지 못한 경우도 있으며 연관이 없는 정보를 필터링하기 위해 최종적인 내용을 찾기까지 많은 시간을 낭비하는 경우가 많다. 이에 털 연구에서는 자원의 의미정보를 구조화하여 정보의 효율적인 검색, 통합, 재사용을 가능하도록 하는 시맨틱 웹 (Semantic Web)기술을 활용하여 초등학교 학습자료에 적합한 온톨로지 (Ontology)를 구축하여 이를 기반으로 초등학교 학습자료를 검색할 수 있는 시스템을 설계하고 구현하였다. 본 검색시스템의 특징은 다음과 같다. 첫째, 학습자료와 연관된 사용자 질의어를 보다 상세하게 입력받는다. 둘째, 사용자 질의어를 바탕으로 온톨로지에 질의하여 검색결과를 얻는다. 셋째, 검색하고자 하는 내용의 의미를 분석하여 요구된 의미에 적합한 자료만을 검색결과로 제시한다.

  • PDF

Developing Reinforcement Learning based Job Allocation Model by Using FlexSim Software (FlexSim 소프트웨어를 이용한 강화학습 기반 작업 할당 모형 개발)

  • Jin-Sung Park;Jun-Woo Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.311-313
    • /
    • 2023
  • 병렬 기계 작업장에서 자원을 효율적으로 활용하기 위해서는 처리할 작업을 적절한 기계에 할당해야 한다. 특정 작업을 처리할 기계를 선택할 때 휴리스틱을 사용할 수도 있으나, 특정 작업장에 맞춤화된 휴리스틱을 개발하는 것은 쉽지 않다. 반면, 본 논문에서는 이종 병렬 기계 작업장을 위한 작업 할당 모형을 개발하는데 강화학습을 응용하고자 한다. 작업 할당 모형을 학습하는데 필요한 에피소드들은 상용 시뮬레이션 소프트웨어인 FlexSim을 이용하여 생성하였다. 아울러, stable-baseline3 라이브러리를 이용하여 강화학습 알고리즘을 생성된 에피소드들에 적용하였다. 실험 결과를 통해 시뮬레이션과 강화학습이 작업장 운영관리에 유용함을 알 수 있었다.

  • PDF

Comparative Study of Fish Detection and Classification Performance Using the YOLOv8-Seg Model (YOLOv8-Seg 모델을 이용한 어류 탐지 및 분류 성능 비교연구)

  • Sang-Yeup Jin;Heung-Bae Choi;Myeong-Soo Han;Hyo-tae Lee;Young-Tae Son
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.2
    • /
    • pp.147-156
    • /
    • 2024
  • The sustainable management and enhancement of marine resources are becoming increasingly important issues worldwide. This study was conducted in response to these challenges, focusing on the development and performance comparison of fish detection and classification models as part of a deep learning-based technique for assessing the effectiveness of marine resource enhancement projects initiated by the Korea Fisheries Resources Agency. The aim was to select the optimal model by training various sizes of YOLOv8-Seg models on a fish image dataset and comparing each performance metric. The dataset used for model construction consisted of 36,749 images and label files of 12 different species of fish, with data diversity enhanced through the application of augmentation techniques during training. When training and validating five different YOLOv8-Seg models under identical conditions, the medium-sized YOLOv8m-Seg model showed high learning efficiency and excellent detection and classification performance, with the shortest training time of 13 h and 12 min, an of 0.933, and an inference speed of 9.6 ms. Considering the balance between each performance metric, this was deemed the most efficient model for meeting real-time processing requirements. The use of such real-time fish detection and classification models could enable effective surveys of marine resource enhancement projects, suggesting the need for ongoing performance improvements and further research.

Analysis of Interest in the Professor Learning Method of Specialized Curriculum Teachers based on CBAM (관심중심수용모형(CBAM)에 기반한 전문교과 교사의 교수·학습 방법에 대한 관심도 분석)

  • Lee, Soo-jeong;Kim, Min-jeong
    • Journal of vocational education research
    • /
    • v.37 no.3
    • /
    • pp.65-83
    • /
    • 2018
  • In this study, we want to analyze the aspect that required in the classroom for the operation of NCS-based curriculum, the interest of specialized subject teachers on implementable teaching and learning methods. As a result, the overall interest in teaching-learning method of specialized subject teachers was similar to that of non-user patterns among four types of interest patterns. In other words, specialized subject teachers want to know more about teaching-learning method for applying NCS-based curriculum, but we are only aware of the general facts at present, and it seems that there is low interest in actual operation. In addition, there was no statistically significant difference in the degree of interest in the teaching-learning method according to general variables(gender, related training experience, career, and curriculum group) of the specialized subject teachers. The specialized subject teachers are not well aware of the influence of the teaching-learning method according to the introduction of NCS-based curriculum, and to that end, there was little interest in collaboration with colleagues.

A Study on Deep Learning Methodology for Bigdata Mining from Smart Farm using Heterogeneous Computing (스마트팜 빅데이터 분석을 위한 이기종간 심층학습 기법 연구)

  • Min, Jae-Ki;Lee, DongHoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.162-162
    • /
    • 2017
  • 구글에서 공개한 Tensorflow를 이용한 여러 학문 분야의 연구가 활발하다. 농업 시설환경을 대상으로 한 빅데이터의 축적이 증가함과 아울러 실효적인 정보 획득을 위한 각종 데이터 분석 및 마이닝 기법에 대한 연구 또한 활발한 상황이다. 한편, 타 분야의 성공적인 심층학습기법 응용사례에 비하여 농업 분야에서의 응용은 초기 성장 단계라 할 수 있다. 이는 농업 현장에서 취득한 정보의 난해성 및 완성도 높은 생육/환경 모델링 정보의 부재로 실효적인 전과정 처리 기술 도출에 소요되는 시간, 비용, 연구 환경이 상대적으로 부족하기 때문일 것이다. 특히, 센서 기반 데이터 취득 기술 증가에 따라 비약적으로 방대해진 수집 데이터를 시간 복잡도가 높은 심층 학습 모델링 연산에 기계적으로 단순 적용할 경우 시간 효율적인 측면에서 성공적인 결과 도출에 애로가 있을 것이다. 매우 높은 시간 복잡도를 해결하기 위하여 제시된 하드웨어 가속 기능의 경우 일부 개발환경에 국한이 되어 있다. 일례로, 구글의 Tensorflow는 오픈소스 기반 병렬 클러스터링 기술인 MPICH를 지원하는 알고리즘을 공개하지 않고 있다. 따라서, 본 연구에서는 심층학습 기법 연구에 있어서, 예상 가능한 다양한 자원을 활용하여 최대한 연산의 결과를 빨리 도출할 수 있는 하드웨어적인 접근 방법을 모색하였다. 호스트에서 수행하는 일방적인 학습 알고리즘과 달리 이기종간 심층 학습이 가능하기 위해선 우선, NFS(Network File System)를 이용하여 데이터 계층이 상호 연결이 되어야 한다. 이를 위해서 고속 네트워크를 기반으로 한 NFS의 이용이 필수적이다. 둘째로 제한된 자원의 한계를 극복하기 위한 메모 공유 라이브러리가 필요하다. 셋째로 이기종간 프로세서에 최적화된 병렬 처리용 컴파일러를 이용해야 한다. 가장 중요한 부분은 이기종간의 처리 능력에 따른 작업을 고르게 분배할 수 있는 작업 스케쥴링이 수행되어야 하며, 이는 처리하고자 하는 데이터의 형태에 따라 매우 가변적이므로 해당 데이터 도메인에 대한 엄밀한 사전 벤치마킹이 수행되어야 한다. 이러한 요구조건을 대부분 충족하는 Open-CL ver1.2(https://www.khronos.org/opencl/)를 이용하였다. 최신의 Open-CL 버전은 2.2이나 본 연구를 위하여 준비한 4가지 이기종 시스템에서 모두 공통적으로 지원하는 버전은 1.2이다. 실험적으로 선정된 4가지 이기종 시스템은 1) Windows 10 Pro, 2) Linux-Ubuntu 16.04.4 LTS-x86_64, 3) MAC OS X 10.11 4) Linux-Ubuntu 16.04.4 LTS-ARM Cortext-A15 이다. 비교 분석을 위하여 NVIDIA 사에서 제공하는 Pascal Titan X 2식을 SLI로 구성한 시스템을 준비하였다. 개별 시스템에서 별도로 컴파일 된 바이너리의 이름을 통일하고, 개별 시스템의 코어수를 동일하게 균등 배분하여 100 Hz의 데이터로 입력이 되는 온도 정보와 조도 정보를 입력으로 하고 이를 습도정보에 Linear Gradient Descent Optimizer를 이용하여 Epoch 10,000회의 학습을 수행하였다. 4종의 이기종에서 총 32개의 코어를 이용한 학습에서 17초 내외로 연산 수행을 마쳤으나, 비교 시스템에서는 11초 내외로 연산을 마치는 결과가 나왔다. 기보유 하드웨어의 적절한 활용이 가능한 심층학습 기법에 대한 연구를 지속할 것이다

  • PDF