• Title/Summary/Keyword: 자연증발

Search Result 182, Processing Time 0.021 seconds

A global-scale assessment of agricultural droughts and their relation to global crop prices (전 지구 농업가뭄 발생특성 및 곡물가격과의 상관성 분석)

  • Kim, Daeha;Lee, Hyun-Ju
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.883-893
    • /
    • 2023
  • While South Korea's dependence on imported grains is very high, droughts impacts from exporting countries have been overlooked. Using the Evaporative Stress Index (ESI), this study globally analyzed frequency, extent, and long-term trends of agricultural droughts and their relation to natural oscillations and global crop prices. Results showed that global-scale correlations were found between ESI and soil moisture anomalies, and they were particularly strong in crop cultivation areas. The high correlations in crop cultivation areas imply a strong land-atmosphere coupling, which can lead to relatively large yield losses with a minor soil moisture deficits. ESI showed a clear decreasing trend in crop cultivation areas from 1991 to 2022, and this trend may continue due to global warming. The sharp increases in the grain prices in 2012 and 2022 were likely related to increased drought areas in major grain-exporting countries, and they seemed to elevate South Korea's producer price index. This study suggests the need for drought risk management for grain-exporting countries to reduce socioeconomic impacts in South Korea.

An Evaluation of Minimum Explosible Concentration and Explosion Severity of Coal Dust in a Thermal Power Plant (화력발전소용 석탄분진의 최소폭발농도와 폭발강도 평가)

  • Yeosong Yoon;Keun-won Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.62-69
    • /
    • 2023
  • The use of low-grade coal is continuously increasing with the development of combustion technology and cost reduction for coal used in thermal power plants . During combustion, the latent heat of evaporation due to moisture is large, and there is a risk of spontaneous combustion and dust explosion during the process of storing and pulverizing coal. This study compared and evaluated the minimum explosive concentration and explosive strength of four types of coal dust-fine, coal dust-coarse, wood pallet+organic dust, and wood chip with coal powder collected from domestic power plant D. The minimum explosive concentration of coal dust was measured according to JIS Z 8818:2002, and the explosion strength was tested according to ASTM E1226 using a Siwek 20 L Chamber Apparatus. As a result of the minimum explosive concentration test, it was found that coal dust-fine has a risk of dust explosion, and since an explosion occurs at a dust concentration of 130 g/m3 of wood chips, it was found that there is a risk of explosion at the lowest dust concentration. According to the dust explosion class standard, Kst is less than 200 bar m/s, and all samples fall under the explosion class St 1, and the dust has a low risk of explosion.

[Kimchi Pill] Preparation of a Kimchi Pill Using Cyclodextrin ([김치환] Cyclodextrin을 이용한 김치환의 제조)

  • Ann Yong-Geun;Lee Kyung-Haeng
    • The Korean Journal of Food And Nutrition
    • /
    • v.18 no.3
    • /
    • pp.207-218
    • /
    • 2005
  • In room temperature, Kimchi becomes acidified and a little decayed, scenting a bad smell, and It couldn't be well kept. But if it should be made into a pill, it could be preserved for a long time for marketing, with nutrition highly concentrated as well as with no scent. Therefore, making Kimchi into a pill needs drying. When dried Kimchi, lactic acid and fragrant ingredient will vanish along with volatilization. The cyclodextrin(CD) as a stabilizer shows that the protecting rate of volatility of lactic acid in Kimchi is higher before than that of after fermentation, and it is higher at the addition $2\%\;than\;of\;1\%$ in case of Kimchi with CD. But it doesn't give much effect on total sugar, reducing sugar, protein and amino acid. Evaporation rate of lactic acid is the least in freeze dry, and natural dry, heat dry come next, respectively. In heat dry, if dried at more than $60^{\circ}C$ for a long time, Kimchi exudes boiling and scorched scent, causing bitter taste. The result of HPLC with superose 12 column at 280nm and 210nm shows that place and amount of main peak is almost the same, but the distribution of other peaks are different, with the revelation of various peaks like peptide and amino acid. The Kimchi pill made by the addition of $1\%$ CD shows that concentration is eight times higher than general Kimchi, total sugar is $14.4\%$, reducing sugar is $8.8\%$, protein is $4.8\%$, amino acid is $2.4\%$, and other contents are $74.4\%$, acidity is 32.8, and pH is 3.5 each. The result of letting 20 people with obesity, 20 patients with constipation have 30 pills(total weight 30g) three times a day for 60 days reveals they lost $2.29\%$ in weight on the average, and 7 among 20 were all relieved in constipation, and 8 responded that they experienced its efficacy.

Development of a Thermoplastic Oral Compensator for Improving Dose Uniformity in Radiation Therapy for Head and Neck Cancer (두경부암 방사선치료 시 선량 균일도 향상을 위한 Thermoplastic 구강 보상체의 개발)

  • Choi, Joon-Yong;Won, Young-Jin;Park, Ji-Yeon;Kim, Jong-Won;Moon, Bong-Ki;Yoon, Hyong-Geun;Moon, Soo-Ho;Jeon, Jong-Byeong;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.269-278
    • /
    • 2012
  • Aquaplast Thermoplastic (AT) is a tissue-equivalent oral compensator that has been developed to improve dose uniformity at the common boundary and around the treated area during radiotherapy in patients with head and neck cancer. In order to assess the usefulness of AT, the degree of improvement in dose distribution and physical properties were compared to those of oral compensators made using paraffin, alginate, and putty, which are materials conventionally used in dental imprinting. To assess the physical properties, strength evaluations (compression and drop evaluations) and natural deformation evaluations (volume change over time) were performed; a Gafchromic EBT2 film and a glass dosimeter inserted into a developed phantom for dose verification were used to measure the common boundary dose and the beam profile to assess the dose delivery. When the natural deformation of the oral compensators was assessed over a two-month period, alginate exhibited a maximum of 80% change in volume from moisture evaporation, while the remaining tissue-equivalent properties, including those of AT, showed a change in volume that was less than 3%. In a free-fall test at a height of 1.5 m (repeated 5 times as a strength evaluation), paraffin was easily damaged by the impact, but AT exhibited no damage from the fall. In compressive strength testing, AT was not destroyed even at 8 times the force needed for paraffin. In dose verification using a glass dosimeter, the results showed that in a single test, the tissue-equivalent (about 80 Hounsfield Units [HU]) AT delivered about 4.9% lower surface dose in terms of delivery of an output coefficient (monitor unit), which was 4% lower than putty and exhibited a value of about 1,000 HU or higher during a dose delivery of the same formulation. In addition, when the incident direction of the beam was used as a reference, the uniformity of the dose, as assessed from the beam profile at the boundary after passing through the oral compensators, was 11.41, 3.98, and 4.30 for air, AT, and putty, respectively. The AT oral compensator had a higher strength and lower probability of material transformation than the oral compensators conventionally used as a tissue-equivalent material, and a uniform dose distribution was successfully formed at the boundary and surrounding area including the mouth. It was also possible to deliver a uniformly formulated dose and reduce the skin dose delivery.

Assessment of water supply reliability in the Geum River Basin using univariate climate response functions: a case study for changing instreamflow managements (단변량 기후반응함수를 이용한 금강수계 이수안전도 평가: 하천유지유량 관리 변화를 고려한 사례연구)

  • Kim, Daeha;Choi, Si Jung;Jang, Su Hyung;Kang, Dae Hu
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.993-1003
    • /
    • 2023
  • Due to the increasing greenhouse gas emissions, the global mean temperature has risen by 1.1℃ compared to pre-industrial levels, and significant changes are expected in functioning of water supply systems. In this study, we assessed impacts of climate change and instreamflow management on water supply reliability in the Geum River basin, Korea. We proposed univariate climate response functions, where mean precipitation and potential evaporation were coupled as an explanatory variable, to assess impacts of climate stress on multiple water supply reliabilities. To this end, natural streamflows were generated in the 19 sub-basins with the conceptual GR6J model. Then, the simulated streamflows were input into the Water Evaluation And Planning (WEAP) model. The dynamic optimization by WEAP allowed us to assess water supply reliability against the 2020 water demand projections. Results showed that when minimizing the water shortage of the entire river basin under the 1991-2020 climate, water supply reliability was lowest in the Bocheongcheon among the sub-basins. In a scenario where the priority of instreamflow maintenance is adjusted to be the same as municipal and industrial water use, water supply reliability in the Bocheongcheon, Chogang, and Nonsancheon sub-basins significantly decreased. The stress tests with 325 sets of climate perturbations showed that water supply reliability in the three sub-basins considerably decreased under all the climate stresses, while the sub-basins connected to large infrastructures did not change significantly. When using the 2021-2050 climate projections with the stress test results, water supply reliability in the Geum River basin was expected to generally improve, but if the priority of instreamflow maintenance is increased, water shortage is expected to worsen in geographically isolated sub-basins. Here, we suggest that the climate response function can be established by a single explanatory variable to assess climate change impacts of many sub-basin's performance simultaneously.

Evaluation of flash drought characteristics using satellite-based soil moisture product between North and South Korea (위성영상 기반 토양수분을 활용한 남북한의 돌발가뭄 특성 비교)

  • Lee, Hee-Jin;Nam, Won-Ho;Jason A. Otkin;Yafang Zhong;Xiang Zhang;Mark D. Svoboda
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.8
    • /
    • pp.509-518
    • /
    • 2024
  • Flash drought is a rapid-onset drought that occurs rapidly over a short period due to abrupt changes in meteorological and environmental factors. In this study, we utilized satellite-based soil moisture product from the Advanced Microwave Scanning Radiometer-2(AMSR2) ascending X-band to calculate the weekly Flash Drought Intensity Index (FDII). We also analyzed the characteristics of flash droughts on the Korean Peninsula over a 10-year period from 2013 to 2022. The analysis of monthly spatial distribution patterns of the irrigation period across the Korean Peninsula revealed significant variations. In North Korea (NK), a substantial increase in the rate of intensification (FD_INT) was observed due to the rapid depletion of soil moisture, whereas South Korea (SK) experienced a significant increase in drought severity (DRO_SEV). Additionally, regional time series analysis revealed that both FD_INT and DRO_SEV were significantly high in the Gangwon province of both NK and SK. The estimation of probability density by region revealed a clear difference in FD_INT between NK and SK, with SK showing a higher probability of severe drought occurrence primarily due to the high values of DRO_SEV. As a result, it is inferred that the occurrence frequency and damage of flash droughts in NK are higher than those in SK, as indicated by the higher density of large FDII values in the NK region. We analyzed the correlation between DRO_SEV and the Evaporative Stress Index (ESI) across the Korean Peninsula and confirmed a positive correlation ranging from 0.4 to 0.6. It is concluded that analyzing overall drought conditions through the average drought severity holds high utility. These findings are expected to contribute to understanding the characteristics of flash droughts on the Korean Peninsula and formulating post-event response plans.

A review of Deepwater Horizon Oil Budget Calculator for its Application to Korea (딥워터 호라이즌호 유출유 수지분석 모델의 국내 적용성 검토)

  • Kim, Choong-Ki;Oh, Jeong-Hwan;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.4
    • /
    • pp.322-331
    • /
    • 2016
  • Oil budget calculator identifies the removal pathways of spilled oil by both natural and response methods, and estimates the remaining oil required response activities. A oil budget calculator was newly developed as a response tool for Deepwater Horizon oil spill incident in Gulf of Mexico in 2010 to inform clean up decisions for Incident Comment System, which was also successfully utilized to media and general public promotion of oil spill response activities. This study analyzed the theoretical background of the oil budget calculator and explored its future application to Korea. The oil budge calculation of four catastrophic marine pollution incidents indicates that 3~8% of spilled oil was removed mechanically by skimmers, 1~5% by in-situ burning, 4.8~16% by chemical dispersion due to dispersant operation, and 37~56% by weathering processes such as evaporation, dissolution, and natural dispersion. The results show that in-situ burning and chemical dispersion effectively remove spilled oil more than the mechanical removal by skimming, and natural weathering processes are also very effective to remove spilled oil. To apply the oil budget calculator in Korea, its parameters need to be optimized in response to the seasonal characteristics of marine environment, the characteristics of spilled oil and response technologies. A new algorithm also needs to be developed to estimate the oil budget due to shoreline cleanup activities. An oil budget calculator optimized in Korea can play a critical role in informing decisions for oil spill response activities and communicating spill prevention and response activities with the media and general public.

A Study of the Safety & Effect of Products Containing Ceramide, Glucan for Atopic Dermatitis (아토피 피부염 환자에 적용한 글루칸과 세라마이드 제제의 유효성 및 안전성에 대한 연구)

  • Yu Chang-Seon;Kim Seon-Hee;Kim Ju-Duck
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.4 s.48
    • /
    • pp.533-541
    • /
    • 2004
  • Atopic dermatitis, also called congenital fever, is a allergic eczema of chronic itching disease. It is a recurrent and familial disease and appears on a wide age group from infant to adult. It is very common, and the ratio of occurrence is about $9{\~}l2\%$ of a child. However. it is showing trend of continuous increase by social and natural environment, food culture, and life style, recently. The human skin plays a barrier role against a physical and chemical stimulus from external environment. According to the latest study, the decreased amount of ceramide in horny layer impairs the bier function and moisture-maintaining function of skin in atopic dematitis patient. Ceramide is a kind of the sphingolipid in which a fatty acid is connected to sphingosin. Ceramide constitutes about $40\%$ of total lipid between keratinocytes and has the function of defense wall and building regular structure to suppress moisture vaporization in horny layer. In horny layer of skin a comified cell is composed of multi-layer structure of a brick shape, and, as for this cornified cell, it is strongly connected by ceramide, cholesterol, and free fatty acid. Here, we described the effects of a cream containing ceramide on the recovery of skin harrier function of atopic dermatitis patient. The safety and efficacy of latex and liquid formula were evaluated as cosmetics for atopic dermatitis. The latex products was composed of intercellular lipid components-ceramide, cholesterol, and free fatty acid-to restore skin barrier function in atopic dermatitis patients. The liquid one contained beta-glucan, magnolia extracts, and licolice extracts, which have skin immunomodulatory and anti-inflammatory effects. It is also confirmed that their possibility on new cosmetic market of atopic dermatitis.

Analysis of Cooling Effect on the Plastic Film Cover of Greenhouse Module Depending on the Shade and Water Curtain (온실지붕 차광과 수막 수준에 따른 냉방효과 분석)

  • Kim, Young-Bok;Park, Joong-Chun;Lee, Seung-Kyu;Kim, Sung-Tae;La, Woo-Jung;Huh, Moo-Ryong;Jeong, Sung-Woo
    • Journal of Bio-Environment Control
    • /
    • v.15 no.4
    • /
    • pp.306-316
    • /
    • 2006
  • In this study, the effect of the shade level, water flow rate applied to the shades and the temperature of water on the greenhouse cooling was investigated depending on the shade level of 0, 35, 55, 75%, and water flow rate and water temperature by the test on the small wooden frames to find out the low cost cooling method. With increasing of the dry bulb temperature of outside air, the dry bulb temperature in the wooden frames increased. For the frames with the shade and water, inside temperatures of the frames were lower of -0.2$\sim$-1.2$^{\circ}C$ than the temperature of the outside air and higher than the water temperature. For the frames without water, inside temperatures of the frames were higher of 1.7$\sim$4$^{\circ}C$ than the outside and not affected by the shade level very much. The water flow rate and the temperature of the water were not the important factors to decrease the inside temperatures in the frames. The black globe temperature became lower with increasing of shade level. The shade frames with water curtain showed the best cooling effect because of reducing thermal radiation and cooling the plastic film cover. The surface temperatures of the plastic film cover for the water supplied modules became lower with increasing of the shade level. The relative humidity was decreased with the dry bulb temperature in the frame increasing and not affected by the dry bulb temperature of the outside air for the frames with the shade and water.

Impacts of Three-dimensional Land Cover on Urban Air Temperatures (도시기온에 작용하는 입체적 토지피복의 영향)

  • Jo, Hyun-Kil;Ahn, Tae-Won
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.3
    • /
    • pp.54-60
    • /
    • 2009
  • The purpose of this study is to analyze the impacts of three-dimensional land cover on changing urban air temperatures and to explore some strategies of urban landscaping towards mitigation of heat build-up. This study located study spaces within a diameter of 300m around 24 Automatic Weather Stations(AWS) in Seoul, and collected data of diverse variables which could affect summer energy budgets and air temperatures. The study also selected reflecting study objectives 6 smaller-scale spaces with a diameter of 30m in Chuncheon, and measured summer air temperatures and three-dimensional land cover to compare their relationships with results from Seoul's AWS. Linear regression models derived from data of Seoul's AWS revealed that vegetation volume, greenspace area, building volume, building area, population density, and pavement area contributed to a statistically significant change in summer air temperatures. Of these variables, vegetation and building volume indicated the highest accountability for total variability of changes in the air temperatures. Multiple regression models derived from combinations of the significant variables also showed that both vegetation and building volume generated a model with the best fitness. Based on this multiple regression model, a 10% increase of vegetation volume decreased the air temperatures by approximately 0.14%, while a 10% increase of building volume raised them by 0.26%. Relationships between Chuncheon's summer air temperatures and land cover distribution for the smaller-scale spaces also disclosed that the air temperatures were negatively correlated to vegetation volume and greenspace area, while they were positively correlated to hardscape area. Similarly to the case of Seoul's AWS, the air temperatures for the smaller-scale spaces decreased by 0.32% ($0.08^{\circ}C$) as vegetation volume increased by 10%, based on the most appropriate linear model. Thus, urban landscaping for the reduction of summer air temperatures requires strategies to improve vegetation volume and simultaneously to decrease building volume. For Seoul's AWS, the impact of building volume on changing the air temperatures was about 2 times greater than that of vegetation volume. Wall and rooftop greening for shading and evapotranspiration is suggested to control atmospheric heating by three-dimensional building surfaces, enlarging vegetation volume through multilayered plantings on soil surfaces.