DOI QR코드

DOI QR Code

Evaluation of flash drought characteristics using satellite-based soil moisture product between North and South Korea

위성영상 기반 토양수분을 활용한 남북한의 돌발가뭄 특성 비교

  • Lee, Hee-Jin (Department of Integrated Systems Engineering, Hankyong National University) ;
  • Nam, Won-Ho (School of Social Safety and Systems Engineering, Institute of Agricultural Environmental Science, National Agricultural Water Research Center, Hankyong National University) ;
  • Jason A. Otkin (Cooperative Institute for Meteorological Satellite Studies, Space Science and Engineering Center, University of Wisconsin-Madison) ;
  • Yafang Zhong (Cooperative Institute for Meteorological Satellite Studies, Space Science and Engineering Center, University of Wisconsin-Madison) ;
  • Xiang Zhang (National Engineering Research Center of Geographic Information System, School of Geography and Information Engineering, China University of Geosciences) ;
  • Mark D. Svoboda (National Drought Mitigation Center (NDMC), School of Natural Resources, University of Nebraska-Lincoln)
  • 이희진 (한경국립대학교 융합시스템공학과) ;
  • 남원호 (한경국립대학교 사회안전시스템공학부) ;
  • ;
  • ;
  • ;
  • Received : 2024.06.07
  • Accepted : 2024.07.18
  • Published : 2024.08.31

Abstract

Flash drought is a rapid-onset drought that occurs rapidly over a short period due to abrupt changes in meteorological and environmental factors. In this study, we utilized satellite-based soil moisture product from the Advanced Microwave Scanning Radiometer-2(AMSR2) ascending X-band to calculate the weekly Flash Drought Intensity Index (FDII). We also analyzed the characteristics of flash droughts on the Korean Peninsula over a 10-year period from 2013 to 2022. The analysis of monthly spatial distribution patterns of the irrigation period across the Korean Peninsula revealed significant variations. In North Korea (NK), a substantial increase in the rate of intensification (FD_INT) was observed due to the rapid depletion of soil moisture, whereas South Korea (SK) experienced a significant increase in drought severity (DRO_SEV). Additionally, regional time series analysis revealed that both FD_INT and DRO_SEV were significantly high in the Gangwon province of both NK and SK. The estimation of probability density by region revealed a clear difference in FD_INT between NK and SK, with SK showing a higher probability of severe drought occurrence primarily due to the high values of DRO_SEV. As a result, it is inferred that the occurrence frequency and damage of flash droughts in NK are higher than those in SK, as indicated by the higher density of large FDII values in the NK region. We analyzed the correlation between DRO_SEV and the Evaporative Stress Index (ESI) across the Korean Peninsula and confirmed a positive correlation ranging from 0.4 to 0.6. It is concluded that analyzing overall drought conditions through the average drought severity holds high utility. These findings are expected to contribute to understanding the characteristics of flash droughts on the Korean Peninsula and formulating post-event response plans.

돌발가뭄(Flash drought)은 급격한 기상 및 환경요인의 변화를 통해 단기간 급속하게 발생하는(rapid-onset) 가뭄으로 정의된다. 최근에는 전 세계적인 기상이상으로 인해 돌발가뭄의 발생빈도가 증가하고 있으며, 폭염 및 강수부족 등의 선행원인을 중심으로 다양한 연구가 수행되고 있다. 돌발가뭄과 같은 극단적인 수문현상은 사전에 대비하지 않으면 농업, 식량 및 도시 상수도 안보에 극심한 피해가 발생할 수 있다. 특히, 북한은 자연재해에 취약한 국가 중 하나로, 자연재해에 대해 대응할 수 있는 사회기반시설 부족으로 인해 사회적, 경제적으로 어려움을 겪고 있으며, 2014~2015년에 걸쳐 발생한 100년 빈도의 극심한 가뭄으로 인해 식량난, 전력난 등의 심각한 피해를 보았다. 본 연구에서는 토양수분 관측위성인 Advanced Microwave Scanning Radiometer-2(AMSR2) ascending X-band 토양수분 자료의 백분위수를 활용하여 주단위 Flash Drought Intensity Index (FDII)를 산정하였으며, 2013년부터 2022년까지 10년간 한반도의 돌발가뭄 특성을 분석하였다. 한반도 전역의 관개기를 대상으로 월별 공간분포를 분석한 결과, 북한 지역에서는 토양수분의 급격한 감소로 인해 가뭄 심화율(FD_INT)이 크게 나타났으며, 남한 지역은 가뭄 심각도(DRO_SEV)가 크게 나타났다. 또한, 지역별 시계열 분석을 통해 남북한의 강원도 지역에서 FD_INT, DRO_SEV가 모두 크게 나타났다. 지역별 확률 밀도 추정 결과, 남북한의 FD_INT 차이가 뚜렷하게 나타났으며, 남한 지역은 DRO_SEV의 높은 값이 주로 분포하여 심각한 가뭄의 발생확률이 높게 나타났다. 북한 지역의 FDII가 큰 값에서 높은 밀도를 보이면서 북한 지역의 돌발가뭄 발생 횟수, 피해 등이 남한 지역보다 높은 것으로 분석되었다. DRO_SEV와 증발스트레스지수(Evaporative Stress Index, ESI)의 한반도 전역에 대한 상관성을 분석하여 0.4~0.6 수준의 강한 양의 상관관계를 확인하였다. 본 연구에서 제시하는 토양수분 백분위수 활용 방법을 통해 남한보다 북한 지역이 돌발가뭄에 취약한 환경으로 판단되며, 돌발가뭄은 토양수분의 지속적인 결핍보다 급격한 감소가 더 큰 영향이 있는 것으로 분석되었다. 본 연구의 결과는 향후 돌발가뭄 감지 및 예측 기술 개발에 활용하여 재해 예방 및 대응에 대한 기초자료로 활용될 수 있을 것으로 판단된다.

Keywords

Acknowledgement

본 결과물은 환경부의 재원으로 한국환경산업기술원의 가뭄대응 물관리 혁신기술 개발사업의 지원을 받아 연구되었습니다(RS-2023-00230286).

References

  1. Anderson, M.C., Hain, C.R., Otkin, J.A., Zhan, X., Mo, K., Svoboda, M.D., Wardlow, B., and Pimstein A. (2013). "An intercomparison of drought indicators based on thermal remote sensing and NLDAS-2 simulations with U.S. drought monitor classifications." Journal of Hydrometeorology, Vol. 14, No. 4, pp. 1035-1056.
  2. Baik, J., Cho, S., Lee, S., and Choi, M. (2019). "Analysis on adequacy of the satellite soil moisture data (AMSR2, ASCAT, and ESACCI) in Korean Peninsula: With classification of freezing and melting periods." Korean Journal of Remote Sensing, Vol. 35, No. 5-1, pp. 625-636.
  3. Christian, J.I., Hobbins, M., Hoell, A., Otkin, J.A., Ford, T.W., Cravens, A.E., Powlen, K.A., Wang, H., and Mishra, V. (2024). "Flash drought: A state of the science review." Wiley Interdisciplinary Reviews: Water, Vol. 11, No. 3, e1714.
  4. Christian, J.I., Martin, E.R., Basara, J.B., Furtado, J.C., Otkin, J.A., Lowman, L.E.L., Hunt, E.D., Mishra, V., and Xiao, X. (2023). "Global projections of flash drought show increased risk in a warming climate." Nature Communications Earth & Environment, Vol. 4, 165.
  5. Kang, M., Jeong, J., Lee, S., and Choi, M. (2023). "A study on spatial onset characteristics of flash drought based on GLDAS evaporative stress in the Korean Peninsula." Journal of Korea Water Resources Association, Vol. 56, No. 10, pp. 631-639.
  6. Kang, S.U., and Moon, J.W. (2014). "Drought analysis using SC-PDSI and derivation of drought severity-duration-frequency curves in North Korea." Journal of Korea Water Resources Association, Vol. 47, No. 9, pp. 813-824.
  7. Kim, S., Kim, H., and Choi, M. (2016). "Evaluation of satellite-based soil moisture retrieval over the Korean Peninsula: Using AMSR2 LPRM algorithm and ground measurement data." Journal of Korea Water Resources Association, Vol. 49, No. 5, pp. 423-429.
  8. Lee, H.J., Nam, W.H., Sur, C., Otkin, J.A., Zhong, Y., and Svoboda, M.D. (2023). "Flash drought onset and development mechanisms using Flash Drought Intensity Index (FDII) based on satellite-based soil moisture." Journal of the Korean Society of Agricultural Engineers. Vol. 65, No. 3, pp. 57-67.
  9. Lee, H.J., Nam, W.H., Yoon, D.H., Hong, E.M., Kim, D.E., Svoboda, M.D., Tadesse, T., and Wardlow, B.D. (2019). "Satellite-based Evaporative Stress Index (ESI) as an indicator of agricultural drought in North Korea." Journal of the Korean Society of Agricultural Engineers. Vol. 61, No. 3, pp. 1-14.
  10. Lee, H.J., Nam, W.H., Yoon, D.H., Svoboda, M.D., and Wardlow, B.D. (2021). "Detection of flash drought using evaporative stress index in South Korea." Journal of Korea Water Resources Association, Vol. 54, No. 8, pp. 577-587.
  11. Lee, H.J., Nam, W.H., Yoon, D.H., Svoboda, M.D., and Wardlow, B.D. (2022). "Flash drought mechanism and characteristics in South Korea." Journal of the Korean Society of Hazard Mitigation, Vol. 22, No. 3, pp. 25-35.
  12. Lee, Y.G., Jung, C.G., Cho, Y., and Kim, S. (2017). "Estimation of soil moisture using multiple linear regression model and COMS land surface temperautre data." Journal of the Korean Society of Agricultural Engineers, Vol. 59, No. 1, pp. 11-20.
  13. Liu, Y., Zhu, Y., Zhang, L., Ren, L., Yuan, F., Yang, X., and Jiang, S. (2020). "Flash droughts characterization over China: From a perspective of the rapid intensification rate." Science of the Total Environment, Vol. 704, 135373.
  14. Mahto, S.S., and Mishra, V. (2024). "Global evidence of rapid flash drought recovery by extreme precipitation." Environmental Research Letters, Vol. 19, 044031.
  15. Nam, W.H., Hayes, M.J., Svoboda, M.D., Tadesse, T., and Wilhite, D.A. (2015). "Drought hazard assessment in the context of climate change for South Korea." Agricultural Water Management, Vol. 160, pp. 106-117.
  16. Nam, W.H., Tadesse, T., Wardlow, B., Hayes, M.J., Svoboda, M.D., and Hong, E.M. (2018). "Developing the vegetation drought response index for South Korea (VegDRI-SKorea) to assess the vegetation condition during drought events." International Journal of Remote Sensing, Vol. 39, No. 5, pp. 1548-1574.
  17. Otkin, J.A., Anderson, M.C., Hain, C., and Svoboda, M.D. (2014). "Examining the relationship between drought development and rapid cahnges in the evaporative stress index." Journal of Hydrometeorology, Vol. 15, pp. 938-956.
  18. Otkin, J.A., Svoboda, M.D., Hunt, E.D., Ford, T.W., Anderson, M.C., Hain, C., and Basara, J.B. (2018). "Flash droughts: A review and assessment of the challenges imposed by rapidonset droughts in the United States." Bulletin of the American Meteorological Society, Vol. 99, No. 5, pp. 911-919.
  19. Otkin, J.A., Zhong, Y., Hunt, E.D., Basara, J., Svoboda, M.D., Anderson, M.C., and Hain, C. (2019). "Assessing the evolution of soil moisture and vegetation conditions during a flash drought-flash recovery sequence over the South-Central United States." Journal of Hydrometeorology, Vol. 20, No. 3, pp. 549-562.
  20. Otkin, J.A., Zhong, Y., Hunt, E.D., Christian, J.I., Basara, J., Nguyen, H., Wheeler, M.C., Ford, T.W., Hoell, A., Svoboda, M.D., and Anderson, M.C. (2021). "Development of a flash drought intensity index." Atmosphere, Vol. 12, No. 6, pp. 741-756.
  21. Qing, Y., Wang, S., Ancell, B.C., and Yang, Z.L. (2022). "Accelerating flash droughts induced by the joint influence of soil moisture depletion and atmospheric aridity." Nature Communications, Vol. 13, 1139.
  22. Sehgal, V., Gaur, N., and Mohanty, B.P. (2021). "Global flash drought monitoring using surface soil moisture." Water Resources Research, Vol. 57, No., 9, e2021WR029901.
  23. Sur, C., Kim, K.J., Choi, W.J., Sim, J.H., and Choi, M.H. (2014). "Drought assessments using satellite-based drought index in Korea: Southern region case in 2013." Journal of the Korean Society of Hazard Mitigation, Vol. 14, No. 3, pp. 127-131.
  24. Svoboda, M.D., LoComte, D., Hayes, M.J., Heim, R., Gleason, K., Angel, J., Rippey, B., Tinker, R., Palecki, M., Stooksbury, D., Miskus, D., and Stephens, S. (2002). "The drought monitor." Bulletin of the American Meteorological Society, Vol. 83, No. 8, pp. 1181-1190.
  25. Trenberth, K.E., Overpeck, J., and Solomon, S. (2004). "Exploring drought and its implications for the future." EOS, Transactions, American Geophysical Union, Vol. 85, No. 3, p. 27.
  26. Ullah, I., Mukherjee, S., Syed, S., Mishra, A.K., Ayugi, B.O., and Aadhar, S. (2024). "Anthropogenic and atmospheric variability intensifies flash drought episodes in South Asia." Nature Communications Earth & Environment, Vol. 5, 267.
  27. Wilhite, D.A., Hayes, M.J., Knutson, C., and Smith, K.H. (2000). "Planning for drought: Moving from crisis to risk management." Journal of the American Water Resources Association, Vol. 36, No. 4, pp. 697-710.
  28. Yao, N., Li, Y., and Peng, L. (2018). "Drought evolution, severity and trends in mainland China over 1961-2013." Science of the Total Environment, Vol. 616-617, pp. 73-89.
  29. Yuan, X., Wang, Y., Ji, P., Wu, P., Sheffield, J., and Otkin, J.A. (2023). "A global transition to flash droughts under climate change." Science, Vol. 380, pp. 187-191.