Annual Conference on Human and Language Technology
/
2021.10a
/
pp.405-409
/
2021
자연어 추론은 전제가 주어졌을때 특정 가설이 전제에 기반해 합당한지 검증하는 자연어 처리의 하위 과제이다. 우리는 질의응답 시스템이 도출한 정답 및 근거 문서를 자연어 추론 모델로 검증할 수 있다는 점에 착안하여, HotpotQA 질의응답 데이터셋을 자연어 추론 데이터 형식으로 변환한뒤 자연어 추론 모델을 학습하여 여러 질의응답 시스템이 생성한 결과물을 재순위화하고자 하였다. 그 결과로, 자연어 추론 모델에 의해 재순위화된 결과물은 기존 단일 질의응답 시스템의 결과물보다 대체로 향상된 성능을 보여주었다.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.419-422
/
2023
자연어 추론은 전제 문장과 가설 문장의 관계를 함의, 중립, 모순으로 분류하는 자연어 처리 태스크이다. 최근 여러 자연어 처리 태스크에서 딥러닝 모델을 이용하는 방법이 우수한 성능을 보이고 있지만, 이는 미세 조정과정에 드는 비용이 많다는 점과 모델 출력의 근거, 과정을 사람이 이해하기 어려운 한계가 있다. 이러한 이유로 최근에는 소량의 입력, 출력 예시를 포함한 프롬프트를 이용한 방법론과 모델 출력에 대한 근거를 생성, 활용하는 방법에 관한 많은 연구가 진행되고 있다. 본 논문에서는 퓨샷 학습 환경의 한국어 자연어 추론 태스크를 위한 세 가지 프롬프트 방법과 이들을 조합하여 적용하는 방법을 제안한다. 이를 통해 '해석 가능성'과 자연어 추론 성능을 모두 향상시킬 수 있음을 보인다.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.189-194
/
2021
자연어 추론은 두 문장 사이의 의미 관계를 분류하는 작업이다. 본 논문에서 제안하는 의미 추론 방법은 의존 구문 분석을 사용하여 동일한 구문 정보나 기능 정보를 가진 두 개의 (피지배소, 지배소) 어절 쌍에서 하나의 어절이 겹칠 때 두 피지배소를 하나의 청크로 만들어주고 청크 기준으로 만들어진 의존 구문 분석을 사용하여 자연어 추론 작업을 수행하는 방법을 의미한다. 이러한 의미 추론 방법을 통해 만들어진 청크와 구문 구조 정보를 Biaffine Attention을 사용하여 한 문장에 대한 청크 단위의 구문 구조 정보를 반영하고 구문 구조 정보가 반영된 두 문장을 Bilinear을 통해 관계를 예측하는 시스템을 제안한다. 실험 결과 정확도 90.78%로 가장 높은 성능을 보였다.
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.170-175
/
2022
일반적으로 대규모 언어 모델들은 다량의 데이터를 오랜시간 사전학습하면서 레이블을 예측하기 위한 성능을 높여왔다. 최근 언어 모델의 레이블 예측에 대한 정확도가 높아지면서, 언어 모델이 왜 해당 결정을 내렸는지 이해하기 위한 신뢰도 높은 Natural Language Explanation(NLE) 을 생성하는 것이 시간이 지남에 따라 주요 요소로 자리잡고 있다. 본 논문에서는 높은 레이블 정확도를 유지하면서 동시에 언어 모델의 예측에 대한 신뢰도 높은 explanation 을 생성하는 참신한 자연어 추론 시스템을 제시한 Natural-language Inference over Label-specific Explanations(NILE)[1] 을 소개하고 한국어 데이터셋을 이용해 NILE 과 NLE 를 활용하지 않는 일반적인 자연어 추론 태스크의 성능을 비교한다.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.225-228
/
2019
문장 임베딩은 문장의 의미를 잘 표현 할 수 있도록 해당 문장을 벡터화 하는 작업을 말한다. 문장 단위 입력을 사용하는 자연언어처리 작업에서 문장 임베딩은 매우 중요한 부분을 차지한다. 두 문장 사이의 의미관계를 추론하는 자연어 추론 작업을 통하여 학습한 문장 임베딩 모델이 기존의 비지도 학습 기반 문장 임베딩 모델 보다 높은 성능을 보이고 있다. 따라서 본 논문에서는 문장 임베딩 성능을 높이기 위하여 사전 학습된 BERT 모델을 이용한 문장 임베딩 기반 자연어 추론 모델을 제안한다. 문장 임베딩에 대한 성능 척도로 자연어 추론 성능을 사용하였으며 SNLI(Standford Natural Language Inference) 말뭉치를 사용하여 실험한 결과 제안 모델은 0.8603의 정확도를 보였다.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.352-357
/
2023
자연어 추론은 두 문장(전제, 가설)간의 관계를 이해하고 추론하여 함의, 모순, 중립 세 가지 범주로 분류하며, 전제-가설-라벨(PHL) 데이터셋을 활용하여 자연어 추론 모델을 학습한다. 그러나, 새로운 도메인에 자연어 추론을 적용할 경우 학습 데이터가 존재하지 않거나 이를 구축하는 데 많은 시간과 자원이 필요하다는 문제가 있다. 본 논문에서는 자연어 추론을 위한 학습 데이터인 전제-가설-라벨 삼중항을 자동 생성하기 위해 [1]에서 제안한 문장 변환 규칙 대신에 거대 언어 모델과 Chain-of-Thought(CoT), Program-aided Language Models(PaL) 등의 프롬프팅(Prompting) 방법을 이용하여 전제-가설-라벨 삼중항을 자동으로 생성하는 방법을 제안한다. 실험 결과, CoT와 PaL 프롬프팅 방법으로 자동 생성된 데이터의 품질이 기존 규칙이나 기본 프롬프팅 방법보다 더 우수하였다.
전문가 시스템에 있어서의 불확실성 정보의 표현 및 처리를 담당하는 주요 추론모델중 Bayesian모델, Certainty Factor 모델 그리고 Dempster-Shafer 모델의 기본이론을 살펴보고자 한다. 이외의 주요 추론 방법으로서 Fuzzy추론 모델이 있는데 이는 판단 지식에 대한 주관적 불확실성과 "매우", "많이" 등의 자연어가 포함하고 있는 불분명성을 체계적이고 효과적으로 다룰 수 있는 Fuzzy Set 이론에 근거한 방법으로서, 불확실성 또는 불명료성을 0에서부터 1 사이의 값을 갖는 membership degree로 표시하며 이를 "MIN"과 "MAX" 함수를 이용한 합성 추론 규칙(Composition Rule of Inference)를 적용하여 처리한다. Fuzzy 추론 모델은 자연어를 포함하는 전문가의 지식 처리에 매우 적합하여 앞으로 그 응용이 높이 기대되는 방법이다. 이외에 Bayesian 모델을 변형 응용한 PROSPECTOR의 Likelyhood Ratio 모델, 정량적 방법인 Theory of Endorsement 모델 등 여러 방법이 있다. 그러나 어느 모델이 더 일반성을 갖고 더 좋은 방법인가 하는 문제에 대하여는 아직 많은 연구가 요구된다. 따라서 이러한 모델들의 전문가 시스템 적용에 있어서는 각 모델의 장단점을 고려하여 주어진 문제 영역에 적합한 모델을 선택하는 것이 바람직하다. 현재 불확실성 처리에 있어서 각 문제에 따른 경험적인 처리에 의존하는 전력 계통 분야의 적용에 있어서도 이러한 실인간 전문가의 추론방법에 근접된 반성을 갖는 불확실성 추론 방버 도입이 요구된다.가의 추론방법에 근접된 반성을 갖는 불확실성 추론 방버 도입이 요구된다.
Proceedings of the Korea Information Processing Society Conference
/
2020.05a
/
pp.563-566
/
2020
지식 그래프 기반의 질문 응답 문제는 자연어 질문에 대한 이해뿐만 아니라, 기반이 되는 지식 그래프상에서 올바른 답변을 찾기 위한 효과적인 추론 능력을 요구한다. 본 논문에서는 다중 홉 추론을 요구하는 복잡한 자연어 질문에 대해 연관 지식 그래프 위에서 답변 추론을 효과적으로 수행할 수 있는 심층 신경망 모델을 제안한다. 제안 모델에서는 지식 그래프상의 추론 과정에서 추른 경로를 명확히 하기 위한 노드의 양방향 특정 전파와 이웃 노드들 간의 맥락 정보까지 각 노드의 특정값에 반영할 수 있는, 표현력이 풍부한 쌍 선형 그래프 신경망 (BGNN)을 이용한다. 본 논문에서는 오픈 도메인의 지식 베이스 Freebase와 자연어 질문 응답 데이터 집합 WebQuestionsSP를 이용한 실험들을 통해, 제안 모델의 효과와 우수성을 확인하였다.
Seo, Jaehyung;Park, Chanjun;Moon, Hyeonseok;Eo, Sugyeong;Kang, Myunghoon;Lee, Seounghoon;Lim, Heuiseok
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.55-60
/
2021
최근 한국어에 대한 자연어 처리 연구는 딥러닝 기반의 자연어 이해 모델을 중심으로 각 모델의 성능에 대한 비교 분석과 평가가 활발하게 이루어지고 있다. 그러나 한국어 생성 모델에 대해서도 자연어 이해 영역의 하위 과제(e.g. 감정 분류, 문장 유사도 측정 등)에 대한 수행 능력만을 정량적으로 평가하여, 생성 모델의 한국어 문장 구성 능력이나 상식 추론 과정을 충분히 평가하지 못하고 있다. 또한 대부분의 생성 모델은 여전히 간단하고 일반적인 상식에 부합하는 자연스러운 문장을 생성하는 것에도 큰 어려움을 겪고 있기에 이를 해결하기 위한 개선 연구가 필요한 상황이다. 따라서 본 논문은 이러한 문제를 해결하기 위해 한국어 생성 모델이 일반 상식 추론 능력을 바탕으로 문장을 생성하도록 KommonGen 데이터셋을 제안한다. 그리고 KommonGen을 통해 한국어 생성 모델의 성능을 정량적으로 비교 분석할 수 있도록 평가 기준을 구성하고, 한국어 기반 자연어 생성 모델의 개선 방향을 제시하고자 한다.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.292-297
/
2020
자연어 추론 모델은 전제와 가설 사이의 의미 관계를 함의와 모순, 중립 세 가지로 판별한다. 영어에서는 RTE(recognizing textual entailment) 데이터셋과 다양한 NLI(Natural Language Inference) 데이터셋이 이러한 모델을 개발하고 평가하기 위한 벤치마크로 공개되어 있다. 본 연구는 국외의 텍스트 추론 데이터 주석 가이드라인 및 함의 데이터를 언어학적으로 분석한 결과와 함의 및 모순 관계에 대한 의미론적 연구의 토대 위에서 한국어 자연어 추론 벤치마크 데이터 구축 방법론을 탐구한다. 함의 및 모순 관계를 주석하기 위하여 각각의 의미 관계와 관련된 언어 현상을 정의하고 가설을 생성하는 방안에 대하여 제시하며 이를 바탕으로 실제 구축될 데이터의 형식과 주석 프로세스에 대해서도 논의한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.