• Title/Summary/Keyword: 자세분석 시스템

Search Result 402, Processing Time 0.027 seconds

The Pose Analysis System using Kinnect (키넥트를 이용한 자세분석 시스템)

  • Lee, Seung-Jae;Kim, Nam-Woo;Jeong, Do-Un
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.395-396
    • /
    • 2015
  • This paper preseints new pose analysis techniques that use a kinnect. This Viision-based system is augmented with a natural interface that enables the user to refine the suggested rectification. This makes it very easy for observer to execute fast and continuous commands.

  • PDF

Analysis of Posture Balance System of using Multi-parameter after Exercising (운동 후 멀티파라미터를 이용한 자세균형의 시스템 분석)

  • Kim, Jeong-Lae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.5
    • /
    • pp.145-150
    • /
    • 2011
  • This study was developed the posture balance system of multi-parameter for moving body after and before exercising. Body transition meaned a head moving and upper body moving. This system has catched a signal for physical condition of body data such as a data acquisition system, data signal processing and feedback system. There were checked a parameter that measured vision, vestibular, somatosensory, CNS. This system was evaluated a data through the stability. The posture balance system can be used to support assessment for body moving in exercising situation. It was expected to monitor a physical parameter for health management system.

A Study on the Analysis of Posture Balance Based on Multi-parameter in Time Variation (시간변화에 따른 다중파라미터기반에서 자세균형의 분석 연구)

  • Kim, Jeong-Lae;Lee, Kyoung-Joung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.5
    • /
    • pp.151-157
    • /
    • 2011
  • This study analyzed the posture balance of time variation for exercising body a period of time. Posture balance measured output values for the posture balance system of body moving in the multi-parameter. Posture moving variation had three methods such as open and closed eye, head moving and upper body moving. There were checked a parameter that measured vision, vestibular, somatosensory, CNS. This system was evaluated a data through the stability. This system has catched a signal for physical condition of body data such as a data acquisition system, data signal processing and feedback system. The output signal was generated Fourier analysis that using frequency of 0.1Hz, 0.1-0.5Hz, 0.5-1Hz and 1Hz over. The posture balance system will be used to support assessment for body moving the posture balance of time variation. It was expected to monitor a physical parameter for health verification system.

System for Real-Time Analysis of Body Posture of Home Inhabitant by Using a Tilt Sensor (기울기 센서를 이용한 홈 거주자의 실시간 자세분석 시스템)

  • Cha, Joo-Heon;Jun, Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.2
    • /
    • pp.135-141
    • /
    • 2011
  • A smart home provides services that its inhabitant needs or wants, by integrating and simultaneously controlling various devices and sensors. In this study, we focused on a smart-home system for people with disabilities and for elderly people. We introduced a new type of system for real-time analysis of body posture of the inhabitants of a smart home. The system includes the concept that offers remote healthcare or medical services by using a 3D tilt sensor for recognizing the static and dynamic postures of inhabitants in real time. It consists of a smart-home server and a 3D tilt sensor, and it uses wireless technology to communicate with the inhabitants and thus enhance their mobility. The smart-home server includes the inference engine that differentiates the dynamic postures from the static ones. Finally, we also demonstrate the usefulness of the proposed system by applying it to a real environment.

Feature Extraction and Classification of Posture for Four-Joint based Human Motion Data Analysis (4개 관절 기반 인체모션 분석을 위한 특징 추출 및 자세 분류)

  • Ko, Kyeong-Ri;Pan, Sung Bum
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.117-125
    • /
    • 2015
  • In the modern age, it is important for people to maintain a good sitting posture because they spend long hours sitting. Posture correction treatment requires a great deal of time and expenses with continuous observation by a specialist. Therefore, there is a need for a system with which users can judge and correct their postures on their own. In this study, we collected users' postures and judged whether they are normal or abnormal. To obtain a user's posture, we propose a four-joint motion capture system that uses inertial sensors. The system collects the subject's postures, and features are extracted from the collected data to build a database. The data in the DB are classified into normal and abnormal postures after posture learning using the K-means clustering algorithm. An experiment was performed to classify the posture from the joints' rotation angles and positions; the normal posture judgment reached a success rate of 99.79%. This result suggests that the features of the four joints can be used to judge and help correct a user's posture through application to a spinal disease prevention system in the future.

Physical Motion Detection Algorithms for Smart Insole Gym Service (스마트 인솔 Gym 서비스를 위한 자세 인식 시스템)

  • Lee, Junhyun;Cho, Hyunwook;Sim, Minsun;Kim, Woongsup
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.11a
    • /
    • pp.795-798
    • /
    • 2017
  • 근래에 들어, 웨어러블 기기의 발전으로 사람의 움직임에 대한 측정이 손쉬워 지면서, 워킹, 러닝, 사이클링 등의 인간의 신체 활동 상태를 감지하여 더 효율적인 운동을 할 수 있도록 정보를 획득, 제공하려는 연구가 계속되고 있다. 본 연구에서는 웨어러블 기기중 하나인 스마트 인솔을 통해서 수집되는 가속도 정보와 압력 정보를 사용하여 운동시에 사람의 운동 자세를 감지하고 측정하는 시스템을 구현하였다. 사람이 헬스센터에서 수행하는 각각의 자세는 운동의 특성에 따라 시계열 신호의 표현 패턴이 다르게 나타나며 이 패턴을 통한 정확한 자세의 감지를 위해서 본 연구에서는 다양한 신호처리 알고리즘을 사용하였으며 이 경우 더 정확한 자세를 측정할 수 있음을 알 수 있었다. 따라서 본 연구에서는 정확한 자세의 감지를 위해 운동의 특징에 따라 알고리즘을 선택하여 시계열 정보를 처리 분석 하는 시스템을 제안하였으며 이를 통해 보다 정확하게 사람의 신체활동을 분석할 수 있었다.

Propellant Consumption Estimation of Reaction Control System During Flight of KSLV-II (한국형발사체 추력기 자세제어시스템 비행 중 추진제 소모량 추정식)

  • Kang, Shin-jae;Oh, Sang-gwan;Yoon, Won-jae;Min, Byeong-joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.7
    • /
    • pp.529-536
    • /
    • 2020
  • Reaction Control System of the third stage of the Korean Space Launch Vehicle II conducts roll control and 3 axis control throughout third stage engine start, satellite separation, and collision and contamination avoidance maneuver. Reaction control system consumes its propellant in each thruster operation. Hence, loading of proper amount of the propellant is important for mission success. It is needed to have a rough estimation method of propellant consumption during the flight. In this paper, we developed a energy equation using pressure and temperature data which are acquired in the on-board reaction control system. We constructed a test system which is similar with the on-board reaction control system to verify the energy equation. Test results using deionized water were compared with estimated propellant consumption. We also conducted an error analysis of the energy equation. We also presented the propellant consumption result of a system level operation test.

Low-Power Walking Compensation Method for Biped Robot Based on Consumption Energy Analysis (소비 에너지 분석을 통한 이족로봇의 저전력 보행 보정 기법)

  • Lee, Chang-Seok;Na, Doo-Young;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.793-798
    • /
    • 2010
  • In this paper we propose a low-power walking compensation method for biped robot based on consumption energy analysis. Firstly, basic walking motions that can reduce energy consumption of robot movements are implemented based on consumption energy analysis according to robot axes. We define knee bent motion as a basic walking motion. It can improve energy consumption and motion stability by lowering center of gravity of the biped robot. We analyze consumption energy of left and right leg of the robot using motor currents and propose a compensation method of walking motions to reduce unbalance of consumption energy between left leg and right leg. It can also improve energy consumption and walking stability of the robot. The proposed low-power compensation method based on consumption energy analysis is verified by walking experiments of a small biped robot with an embedded system.

저궤도위성 열진공 시스템 환경시험 후 자이로센서 결과 분석

  • Kim, Yeong-Yun;Jo, Seung-Won;Heo, Yun-Gu;Chae, Dong-Cheol;Choe, Jong-Yeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.172.2-172.2
    • /
    • 2012
  • 위성은 발사 후 임무수행을 위하여 자세획득 및 자세결정이 필수적이다. 저궤도 위성에서 자이로센서는 별 센서와 함께 사용되거나, 별 추적기와 사용하여 자세의 변화량을 읽고 자세제어를 수행한다. 자이로센서는 크게 전력공급부와 각속도 측정부, 그리고 전자처리부 등으로 구성된다. 위성은 발사 전 조립시험 기간 동안 전자파, 진동, 열/진공 등의 환경시험 통하여 수차례의 성능 유무를 확인한다. 본고에서는 열진공시험 전과 후, 그리고 열진공시험 진행중에 측정한 결과를 통하여, 시스템적인 측면에서의 자이로센서 건강상태 및 성능을 분석하였다. 위성시스템 상태의 자이로 시험은 자이로센서가 가질 수 있는 조합에 따라 위성의 방향에 따른 지구각속도를 확인 및 관련 데이터를 분석하였다.

  • PDF

Thruster Attitude Control System for the Ksr-3 (KSR-3 추격기 자세제어 시스템 개발)

  • Jeong,Ho-Rak;Jeon,Sang-Un;Choe,Hyeong-Don
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.104-112
    • /
    • 2003
  • This paper introduces a thruster attitude control system for the KSR-III and addresses system configuration, design condition for several components and development systems. These systems were confirmed through environmental tests, compatibility tests with other sub-systems and are planned to launch by this year. After the launch test, it can be redesigned for optimal systems using post-analysis.