DOI QR코드

DOI QR Code

A Study on the Analysis of Posture Balance Based on Multi-parameter in Time Variation

시간변화에 따른 다중파라미터기반에서 자세균형의 분석 연구

  • 김정래 (을지대학교 보건과학대학 의료공학과) ;
  • 이경중 (연세대학교 보건과학대학 대학원 의공학과)
  • Received : 2011.09.07
  • Accepted : 2011.10.14
  • Published : 2011.10.31

Abstract

This study analyzed the posture balance of time variation for exercising body a period of time. Posture balance measured output values for the posture balance system of body moving in the multi-parameter. Posture moving variation had three methods such as open and closed eye, head moving and upper body moving. There were checked a parameter that measured vision, vestibular, somatosensory, CNS. This system was evaluated a data through the stability. This system has catched a signal for physical condition of body data such as a data acquisition system, data signal processing and feedback system. The output signal was generated Fourier analysis that using frequency of 0.1Hz, 0.1-0.5Hz, 0.5-1Hz and 1Hz over. The posture balance system will be used to support assessment for body moving the posture balance of time variation. It was expected to monitor a physical parameter for health verification system.

본 논문은 인체의 일정한 운동을 하는 동안에 시간의 변화에 따른 자세균형을 분석한다. 자세균형은 자세에 움직임 변화를 주어 다중파라미터로 변화 산출 값으로 나타냈다. 이렇게 산출된 값을 분석하여 균형자세 시스템을 구성하였다. 자세의 움직임 변화는 3가지 방법으로 눈을 감고 뜨는 방법, 머리를 앞뒤로 움직이는 방법과 상체 움직임 방법이다. 측정한 다중파라미터의 항목은 시각(Vision), 전정기관(Vestibular), 체성감각(Somatosensory), 중추신경계(CNS)이고, 측정파라미터의 평가는 안정성(Stability)으로 확인하였다. 균형자세 시스템은 이러한 변화에서 발생한 신호를 데이터 획득 장치에서 얻고, 신호를 신호 전달 장치를 통하여 전달하였으며, 데이터 분석을 통하여 자세에 대한 평가로 활용하였다. 궤환 시스템은 획득한 데이터를 재조정하는데 사용하였다. 발생되는 신호는 푸리에변환 하였고, 사용되는 주파수는 0.1Hz, 0.1-0.5Hz, 0.5-1Hz와 1Hz 이상을 사용하였다. 본연구의 결과로 시간 변화에서 운동부하를 부여함에 따라 인체의 자세변화에 따라 발생된 신호를 멀티파라미터 상에서 장시간 변화에 대한 파라미터 간의 변화를 통하여 개별 신체의 자세균형에 검증할 수 있는 시스템이 이루어져야 하며, 이를 통하여 새로운 검증 시스템에 활용할 수 있을 것으로 예상한다.

Keywords

References

  1. Lai C.C., Lee R.G., Hsiao C.C., Liu H.S., Chen C.C., "A H-QoS-demand personalized home physiological monitoring system over a wireless multi-hop relay network for mobile home healthcare applications", J of Network and Computer Applications, Vol.32, pp.1229-1241, 2009. https://doi.org/10.1016/j.jnca.2009.05.007
  2. Daubney ME, Culham EG. Lower-extremity muscle force and balance performance in adults aged 65 years and older. Phys Ther Vol.79, pp.1177-85, 1999,
  3. Woo YK, Hwang JH, An J, Park H, Kim YH, Lee KW, et al. Effect of characteristics of joint motion of lower extremity according to aging on balance in elderly. J Korean Acad Rehab Med Vol.29. pp.109-18, 2005.
  4. Lacour M, Bernard-Demanze L, Dumitrescu M. Posture control, aging, and attention resources: models and posture-analysis methods. Neurophysiol Clin Vol.38, pp.411-21, 2008. https://doi.org/10.1016/j.neucli.2008.09.005
  5. Alwan M, Mack DC, Dalal S, Kell S, Turner B, Felder RA, "Impact of passive in-home health status monitoring technology in home health: outcome pilot. In: Proceedings of the 1st distributed diagnosis and home healthcare (D2H2)conference." Arlington , VA, USA, 2-4 April, pp.79-82, 2006.
  6. Bratan T, Clake M, Jones R, Larkworthy A, Paul R, "Evaluation of the practical feasibility and acceptability of home monitoring in residential homes." J Telemed Telecare, Vol.11(suppl.1), pp.29-31, 2005. https://doi.org/10.1177/1357633X0501100107
  7. Korhonen I, Parkka J, Van Gils M., "Health monitoring in the home of the future." IEEE Eng Med Bio Mag, Vol.22(3), pp.266-73, 2003.
  8. Pare G, Jaana M, Sicotte C, "Systematic review of home telemonitoring for chronic diseases: the evidence base." J Am Med Inf Assoc, Vol.14(3), pp.269-77, 2007. https://doi.org/10.1197/jamia.M2270
  9. Cohn H, Blatchly CA, Gombash LL. "A study of the clinical test of sensory interaction and balance". Phys Ther , Vol.73, pp.346-35,1993. https://doi.org/10.1093/ptj/73.6.346
  10. Ishizaki H, Pyykko I, Aalto H, Starck J. Repeatability and effects of instruction of body sway. Acta Otolaryngol (Stockh), Vol.481, pp. 589-92, 1991.
  11. Prado JM, StoVregen TA, Duarte M. Postural sway during dual tasks in young and elderly adults. Gerontology, Vol.53,pp.274-812,2007.
  12. Yelnik A, Bonan I. Clinical tools for assessing balance disorders. Neurophysiol Clin., Vol.38, pp.439-45, 2008. https://doi.org/10.1016/j.neucli.2008.09.008
  13. Shub YK-RR, Kohen-Raz A, Ashkennazi I, Combined effect of circadian variations and fatigues-assessement by flight simulator and multiplate posturography. In:10th International Symposium on Aviation Psychology. Ohio State University, Columbus, Ohio, 896-902, 1999.
  14. Cohn H, Blatchly CA, Gombash LL, "A study of the clinical test of sensory interaction and balance". Phys Ther. Vol.73, pp.346-354, 1993. https://doi.org/10.1093/ptj/73.6.346
  15. Shulmann DL, Goldfish E and Fisher AG. "Effect of movement on dynamic equilibrium". Phys Ther. Vol.67, pp.1054-1057,1987. https://doi.org/10.1093/ptj/67.7.1054
  16. Fabio RPD. "Sensitivity and specificity of platform posturography for identifying patients with vestibular dysfunction". Phys Ther., Vol. 75, pp.290-305, 1995. https://doi.org/10.1093/ptj/75.4.290
  17. Shumway-Cook A and Horack FB. "Assessing the influence of sensory interaction on balance: Suggestion from field' Phys Ther. Vol.66, pp.1548-1550, 1986. https://doi.org/10.1093/ptj/66.10.1548
  18. Shulmann DL, Goldfish E and Fisher AG. "Effect of movement on dynamic equilibrium". Phys Ther. Vol67, pp.1054-1057,1987. https://doi.org/10.1093/ptj/67.7.1054
  19. Fabio RPD. "Sensitivity and specificity of platform posturography for identifying patients with vestibular dysfunction". Phys Ther.,Vol. 75, pp.290-305,1995. https://doi.org/10.1093/ptj/75.4.290
  20. de Wit G. Optic versus vestibular and proprioceptive impulses, measured by posturometry. Agressologie, Vol.13, pp.75-9,1972.