• Title/Summary/Keyword: 자성 복합재

Search Result 15, Processing Time 0.023 seconds

폐기 바이오매스 기반 자성 복합재를 이용한 해양 유출유의 제거

  • Ryu, Jae-Hyeong;Jang, Jae-Su
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2020.11a
    • /
    • pp.23-24
    • /
    • 2020
  • 커피박을 FeCl3·6H2O로 전처리하여 제조한 자성 복합재의 유출유 회수 실험을 진행하였다. 전반적으로 사용하지 않은 디젤엔진 오일이 사용한 디젤엔진 오일보다도 오일 회수율이 높게 나타났고, 수중온도가 5℃일때보다도 25℃일 때 오일 회수량이 더 높게 나타났다. 실험 결과는 모든 온도에서 오일 회수량을 높이기 위해서는 FeCl3·6H2O 전처리 용액의 농도가 최소한 0.1 M은 되어야 함을 보여 주었다.

  • PDF

High Frequency Properties of Fe93.5Si6.5 Magnetic Powder/Epoxy Composite Film (Fe93.5Si6.5 자성분말/에폭시 복합재 필름의 고주파 특성)

  • Hong, Seon-Min;Kim, Cheol-Gi
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.5
    • /
    • pp.195-199
    • /
    • 2008
  • Composites of $Fe_{93.5}Si_{6.5}$ powder and epoxy were prepared using a thermal curing process. Scanning electron microscope (SEM), vibrating sample magnetometer (VSM) and network analyzer were used to analyze the structure, electromagnetic properties and microwave absorption of the composites. Results show that the saturation magnetization depends on the fraction of the $Fe_{93.5}Si_{6.5}$ powder in the composite, which affects initial permeability. It is believed that the eddy current loss is a dominant factor over 1 GHz and that the resonance frequency of the composite decreases with increasing fractions of $Fe_{93.5}Si_{6.5}$ powder. Finally, reflection loss was calculated from the permeability and permittivity of these composites. Composite with 50 wt.% $Fe_{93.5}Si_{6.5}$ powder fractions and 5 mm thickness showed reflection loss below -20 dB from 3.66 GHz to 4.16 GHz. Therefore, it is believed that thin Fe-Si/epoxy composites may be a good candidate for microwave absorption application.

Characterization of FeCo Magnetic Metal Hollow Fiber/EPDM Composites for Electromagnetic Interference Shielding (FeCo 자성 금속 중공형 섬유 고분자 복합재의 전자파 차폐 특성 연구)

  • Choi, Jae Ryung;Jung, Byung Mun;Choi, U Hyeok;Cho, Seung Chan;Park, Ka Hyun;Kim, Won-jung;Lee, Sang-Kwan;Lee, Sang Bok
    • Composites Research
    • /
    • v.28 no.6
    • /
    • pp.333-339
    • /
    • 2015
  • Electromagnetic interference shielding composite with low density ($1.18g/cm^3$) was fabricated using electroless plated FeCo magnetic metal hollow fibers and ethylene propylene diene monomer (EPDM) polymer. Aspect ratio of the fibers were controlled and their hollow structure was obtained by heat treatment process. The FeCo hollow fibers were then mixed with EPDM to manufacture the composite. The higher aspect ratio of the magnetic metal hollow fibers resulted in high electromagnetic interference shielding effectiveness (30 dB) of the composite due to its low sheet resistance (30 ohm/sq). The enhanced electromagnetic interference shielding effectiveness was mainly attributed to the formation of conducting network over the percolation threshold by high aspect ratio of fibers as well as an increase of the reflection loss by impedance mismatch owing to low sheet resistance, absorption loss, and multiple internal reflections loss.

Research Trend of Soft Magnetic Composite Materials with High Energy Efficiency (고에너지효율 연자성 복합 분말 소재의 연구개발 동향)

  • Kim, Hwi-Jun
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.2
    • /
    • pp.77-82
    • /
    • 2011
  • The use of soft magnetic materials have been increasing in the various industrial fields according to the increasing demand for high performance, automatic, miniaturing equipments in the recent our life. In this study, we investigated the effect of factors on the core loss and magnetic properties of electrical steel and soft magnetic composites. Furthermore, we reviewed the major efforts to reduce the core loss and improve the soft magnetic properties in the two main soft magnetic materials. Domain purification which results from reduced density of defects in cleaner electrical steels is combined with large grains to reduce hysteresis loss. The reduced thickness and the high electrical conductivity reduce the eddy current component of loss. Furthermore, the coating applied to the surface of electrical steel and texture control lead to improve high permeability and low core loss. There is an increasing interest in soft magnetic composite materials because of the demand for miniaturization of cores for power electronic applications. The SMC materials have a broad range of potential applications due to the possibility of true 3-D electromagnetic design and higher frequency operation. Grain size, sintering temperature, and the degree of porosity need to be carefully controlled in order to optimize structure-sensitive properties such as maximum permeability and low coercive force. The insulating coating on the powder particles in SMCs eliminates particle-to-particle eddy current paths hence minimizing eddy current losses, but it reduces the permeability and to a small extent the saturation magnetization. The combination of new chemical composition with optimum powder manufacturing processes will be able to result in improving the magnetic properties in soft magnetic composite materials, too.

Effect of Calcination Temperature on Electromagnetic Wave Absorption Properties of M-type Ferrite Composite (하소온도가 M형 페라이트 복합재의 전자파 흡수 특성에 미치는 영향)

  • Seong Jun Cheon;Jae Ryung Choi;Sang Bok Lee;Je In Lee;Horim Lee
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.289-296
    • /
    • 2023
  • In this study, we investigated the electromagnetic properties and microwave absorption characteristics of M-type hexagonal ferrites, which are known as millimeter-wave absorbing materials, according to their calcination temperature. The M-type ferrites synthesized using a molten salt-based sol-gel method exhibited a single-phase M-type crystal structure at calcination temperatures above 850℃. The synthesized particle size increased as well with the calcination temperature. Saturation magnetization increased gradually with increasing calcination temperature, but coercivity reached a maximum at 1050℃ and then rapidly decreased. After preparing a thermoplastic polyurethane (TPU) composite containing 70 wt% of M-type ferrites, we measured the complex permittivity and permeability in the Q-band (33-50 GHz) and V-band (50-75 GHz) frequency ranges, where ferromagnetic resonance occurred. Strong magnetic loss from ferromagnetic resonance occurred in the 50 GHz band for all composite samples. Based on the measured results, we calculated the reflection loss of the TPU/M-type ferrite composite. By calculating the reflection loss of the M-type ferrite composite, the M-type ferrite calcined at 1250℃ showed excellent electromagnetic wave absorption performance of more than -20 dB at 52 GHz with a thickness of about 0.5 mm.

A study of permeability of ultra-fine cement matrix for continuous fiber reinforcement (연속섬유 보강용 초미립 시멘트 매트릭스의 침적성 연구)

  • Kim, T.J.;Kim, K.S.;Choi, L.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.177-182
    • /
    • 1999
  • 사용한 보수.보강재, Rod, Fabric, Strand 형상을 콘크리트 구조물등에 보강재로 사용되어왔다. 이 재료는 해양환경하에서 내식성과 내구성을 갖는 철근및 철골대체용 복합소재와 초고층 경량 연속섬유보강 시멘트 복합재료는 탄소섬유, 아라미드섬유, 유리섬유등의 쉬트(sheet)형상을 신건재, 비자성, 비전도성, 전파차폐용 재료등에 사용할수있다. 그러나 FRP Rod를 내식성이 요구되는 철근 및 철골대체재로 사용할 경우에는 폴리머 매트릭스의 열화, 섬유와 폴리머간 계면 접착강도의 한계, 화재시 내화성, 보강재의 인발성등의 단점들을 갖고있다[1]. (중략)

  • PDF

Ultra-high Temperature EM Wave Absorption Behavior for Ceramic/Sendust-aluminosilicate Composite in X-band (X-Band 영역에서의 세라믹/샌더스트-알루미노실리케이트 복합재의 초고온 전자파 흡수 거동)

  • Choi, Kwang-Sik;Sim, Dongyoung;Choi, Wonwoo;Shin, Joon-Hyung;Nam, Young-Woo
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.201-215
    • /
    • 2022
  • This paper presents the development of thin and lightweight ultra-high temperature radar-absorbing ceramic composites composed of an aluminosilicate ceramic matrix-based geopolymer reinforced ceramic fiber and sendust magnetic nanoparticles in X-band frequency range (8.2~12.4 GHz). The dielectric properties with regard to complex permittivity of ceramic/sendust-aluminosilicate composites were proportional to the size of sendust magnetic nanoparticle with high magnetic characteristic properties as flake shape and its concentrations in the target frequency range. The characteristic microstructures, element composition, phase identification, and thermal stability were examined by SEM, EDS, VSM and TGA, respectively. The fabricated total thicknesses of the proposed single slab ultra-high temperature radar absorber correspond to 1.585 mm, respectively, exhibiting their excellent EM absorption performance. The behavior of ultra-high temperature EM wave absorption properties was verified to the developed free-space measurement system linked with high temperature furnace for X-band from 25℃ to 1,000℃.

Dispersion Characteristics of Magnetic Particle/Graphene Hybrid Based on Dispersant and Electromagnetic Interference Shielding Characteristics of Composites (분산제에 따른 자성금속 무전해도금 기반 그래핀 분산 특성 및 복합재의 전자파 차폐 특성 연구)

  • Lee, Kyunbae;Lee, Junsik;Jung, Byung Mun;Lee, Sang Bok;Kim, Taehoon
    • Composites Research
    • /
    • v.31 no.3
    • /
    • pp.111-116
    • /
    • 2018
  • In this paper, magnetic FeCoNi particles have been grown through electroless plating on the surface of graphene, and then this hybrid material has been dispersed by various surfactants to prepare films. The pyridine surfactant shows the highest dispersability and low surface resistance value (351 Ohm/sq) and the electromagnetic shielding ability at the frequency of 10 GHz. Specially, the evaporation of the pyridine during the drying process could be able to form the internal conductive network and high dispersion of FeCoNi on the surface of graphene.

Microwave Absorbing Properties of Grid-type Magnetic Composites (격자형 자성 복합재의 전파흡수 특성)

  • Park, Myung-Joon;Kim, Sung-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.5
    • /
    • pp.389-393
    • /
    • 2012
  • Improvement in microwave absorbance has been investigated by insertion of a periodic air cavity in rubber composites filled with magnetic powders. A mixture of $Co_2Z$ hexagonal ferrite and Fe powders were used as the absorbent fillers in silicone rubber matrix. The complex permeability and complex permittivity of the magnetic composites were measured by reflection/transmission technique. In the grid-type magnetic absorbers, the equivalent permeability (${\mu}_{eq}$) and permittivity (${\varepsilon}_{eq}$) are calculated as a function of air volume rate (K) on the basis of effective medium theory. Reduction in the material parameters (especially, dielectric permittivity and magnetic loss) has been estimated with the increase of K. Plotting the ${\mu}_{eq}$ and ${\varepsilon}_{eq}$ on the solution map of wave-impedance matching, wide bandwidth microwave absorbance has been predicted in the magnetic composites with an optimum value of K.