DOI QR코드

DOI QR Code

Dispersion Characteristics of Magnetic Particle/Graphene Hybrid Based on Dispersant and Electromagnetic Interference Shielding Characteristics of Composites

분산제에 따른 자성금속 무전해도금 기반 그래핀 분산 특성 및 복합재의 전자파 차폐 특성 연구

  • Lee, Kyunbae (Composites Reasearch Division, Korea Institute of Materials Science (KIMS)) ;
  • Lee, Junsik (Composites Reasearch Division, Korea Institute of Materials Science (KIMS)) ;
  • Jung, Byung Mun (Composites Reasearch Division, Korea Institute of Materials Science (KIMS)) ;
  • Lee, Sang Bok (Composites Reasearch Division, Korea Institute of Materials Science (KIMS)) ;
  • Kim, Taehoon (Composites Reasearch Division, Korea Institute of Materials Science (KIMS))
  • Received : 2018.03.23
  • Accepted : 2018.06.23
  • Published : 2018.06.29

Abstract

In this paper, magnetic FeCoNi particles have been grown through electroless plating on the surface of graphene, and then this hybrid material has been dispersed by various surfactants to prepare films. The pyridine surfactant shows the highest dispersability and low surface resistance value (351 Ohm/sq) and the electromagnetic shielding ability at the frequency of 10 GHz. Specially, the evaporation of the pyridine during the drying process could be able to form the internal conductive network and high dispersion of FeCoNi on the surface of graphene.

본 논문에서는 그래핀 표면에 무전해 도금을 통해 FeCoNi 자성 나노입자를 환원 성장시킨 후 이를 다양한 계면 활성제로 분산시켜 고분자 복합필름을 제조하였다. Pyridine 계면 활성제로 분산 시킨 후 제조한 복합필름은 가장 높은 분산성과 낮은 표면저항 값(351 Ohm/sq) 및 10 GHz 주파수에서 90% 이상의 전자파 차폐 능력을 보였다. 특히, 건조과정에서 pyridine의 증발은 내부 전도체 네트워크 형성과 분산성이 높은 필름 형성을 형성 할 수 있는 것으로 확인되었다.

Keywords

References

  1. Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., and Ruoff, R.S., "Graphene and Graphene Oxide: Synthesis, Properties, and Applications," Advanced Materials, Vol. 22, 2010, pp. 3906-3924. https://doi.org/10.1002/adma.201001068
  2. Lonkar, S.P., Deshmukh, Y.S., and Abdala, A.A., "Recent Advances in Chemical Modifications of Graphene," Nano Research, Vol. 8, 2015, pp. 1039-1074. https://doi.org/10.1007/s12274-014-0622-9
  3. Li, Q., Li, X., Wageh, S., Al-Ghamdi, A.A., and Yu, J., "CdS/Graphene Nanocomposite Photocatalysts," Advanced Energy Materials, Vol. 5, 2015.
  4. Arief, I., Biswas, S., and Bose, S., "FeCo-Anchored Reduced Graphene Oxide Framework-Based Soft Composites Containing Carbon Nanotubes as Highly Efficient Microwave Absorbers with Excellent Heat Dissipation Ability," ACS Applied Materials & Interfaces, Vol. 9, 2017, pp. 19202-19214. https://doi.org/10.1021/acsami.7b04053
  5. Wang, J., Wang, J., Zhang, B., Sun, Y., Chen, W., and Wang, T., "Combined use of Lightweight Magnetic $Fe_3O_4$-coated Hollow Glass Spheres and Electrically Conductive Reduced Graphene Oxide in an Epoxy Matrix for Microwave Absorption," Journal of Magnetism and Magnetic Materials, Vol. 401, 2016, pp. 209-216. https://doi.org/10.1016/j.jmmm.2015.10.001
  6. Lee, S.H., and Oh, I.K., "Hybrid Carbon Nanomaterials for Electromagnetic Interference Shielding," Composites Research, Vol. 29, 2016, pp. 138-144. https://doi.org/10.7234/composres.2016.29.4.138
  7. Li, W., Geng, X., Guo, Y., Rong, J., Gong, Y., Wu, L. Zhang, X., Li, P., Xu, J., Cheng, G., Sun, M., and Liu, L., "Reduced Graphene Oxide Electrically Contacted Graphene Sensor for Highly Sensitive Nitric Oxide Detection," ACS Nano, Vol. 5, 2011, pp. 6955-6961. https://doi.org/10.1021/nn201433r
  8. Uysal, M., Akbulut, H., Tokur, M., Algul, H., and Cetinkaya, T., "Structural and Sliding Wear Properties of Ag/Graphene/WC Hybrid Nanocomposites Produced by Electroless Co-deposition," Journal of Alloys and Compounds, Vol. 654, 2016, pp. 185-195. https://doi.org/10.1016/j.jallcom.2015.08.264
  9. Li, X., Feng, J., Du, Y., Bai, J., Fan, H., Zhang, H., Peng, Y., and Li, F., "One-pot Synthesis of $CoFe_2O_4$/graphene Oxide Hybrids and Their Conversion into FeCo/graphene Hybrids for Lightweight and Highly Efficient Microwave Absorber," Journal of Materials Chemistry A, Vol. 3, 2015, pp. 5535-5546. https://doi.org/10.1039/C4TA05718J
  10. Zhao, C., and Wang, J., "Fabrication and Tensile Properties of Graphene/copper Composites Prepared by Electroless Plating for Structrual Applications," Physica Status Solidi (a), Vol. 211, 2014, pp. 2878-2885. https://doi.org/10.1002/pssa.201431478
  11. Park, S., An, J., Jung, I., Piner, R.D., An, S.J., Li, X., Velamakanni, A., and Ruoff, R.S., "Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents," Nano Letters, Vol. 9, 2009, pp. 1593-1597. https://doi.org/10.1021/nl803798y
  12. Khan, M., Shakoor, A., Tiaz Khan, G., Sultana, S., and Zia, A., "A Study of Stable Graphene Oxide Dispersions in Various Solvents," Journal of the Chemical Society of Pakistan, Vol. 37, 2015, pp. 62-67.
  13. Lotya, M., King, P.J., Khan, U., De, S., and Coleman, J.N., "High-Concentration, Surfactant-Stabilized Graphene Dispersions," ACS Nano, Vol. 4, 2010, pp. 3155-3162. https://doi.org/10.1021/nn1005304
  14. Ciplak, Z., Yildiz, N., and Calimli, A., "Investigation of Graphene/ Ag Nanocomposites Synthesis Parameters for Two Different Synthesis Methods," Fullerenes, Nanotubes and Carbon Nanostructures, Vol. 23, 2014, pp. 361-370.
  15. Li, D., Muller, M.B., Gilje, S., Kaner, R.B., and Wallace, G.G., "Processable Aqueous Dispersions of Graphene Nanosheets," Nature Nanotechnology, Vol. 3, 2008, pp. 101-105. https://doi.org/10.1038/nnano.2007.451
  16. Uysal, M., Karslioglu, R., Alp, A., and Akbulut, H., "The Preparation of Core-shell $Al_2O_3$/Ni Composite Powders by Electroless Plating," Ceramics International, Vol. 39, 2013, pp. 5485-5493. https://doi.org/10.1016/j.ceramint.2012.12.060
  17. Choi, J.R., Jung, B.M., Choi, U.H., Cho, S.C., Park, K.H., Kim, W.J., Lee, S.K., and Lee, S.B., "Characterization of FeCo Magnetic Metal Hollow Fiber/EPDM Composites for Electromagnetic Interference Shielding," Composites Research, Vol. 28, 2015, pp. 333-339. https://doi.org/10.7234/composres.2015.28.6.333