자성나노유체(ferrofluid)는 계면활성제로 코팅된 직경 10 nm인 자성나노입자(magnetic nanoparticle)가 바탕액체(물 또는 오일 등)에 분산하고 있는 액체이다. 최근 연구에 의하면 자성나노 유체가 변압기 절연유로 사용될 경우 열전달 및 절연 특성이 향상된다고 보고되고 있다. 또한 자성나노유체에 포함된 자성나노입자는 영구자석 및 전자석 등에 의한 외부 자기장뿐만 아니라, 두 전극 사이에 인가된 전기장에 의한 유도자기장에 영향을 받는다고 한다. 본 연구에서는 두 전극 사이 전압을 1 kV로 인가한 경우에서 광학현미경을 이용한 자성나노입자의 마이크로 채널(microchannel) 내부 이동특성 관측 및 Maxwell 방정식을 이용한 전자기장 수치해석을 수행하였다. 실험 및 해석 결과를 통하여 자성나노유체에 포함된 자성나노입자가 인가된 전기장에 의하여 발생되는 이동특성을 분석하고, 선행연구에서 보고된 절연특성 변화에 관한 상관관계에 대해 고찰하였다. 광학현미경 관측 결과로부터 전기장이 인가되지 않은 경우에 균일하게 분산되어 있는 자성나노입자는 전기장 인가에 따라 발생되는 유도자기장에 의하여 입자 간의 뭉침(agglomeration) 현상과 전극 주위로 이동하려는 성질을 확인하였다. 또한 수치해석 결과로부터 자성나노입자의 존재로 인하여 전극 사이의 전기장 강도와 자속밀도가 증가함을 확인하였으며, 자성나노입자의 이동을 유발하는 유도자기장이 전극 주위에서 큰 것을 파악할 수 있었다. 이와 같은 결과는 자성나노입자가 변압기 절연유에 첨가된 경우우 절연파괴전압이 변화되는 이유를 설명할 수 있는 근거가 된다.
열화학 기상합성법을 이용한 탄소나노튜브의 성장에서 촉매 금속 층의 형성 공정은 탄소나노튜브의 직경 및 길이를 제어해주는 가장 중요한 요소이다. 탄소나노튜브의 대량합성을 위해 자성유체를 이용한 촉매 금속 층의 손쉬운 형성공정을 개발하였다. 수용성 폴리비닐알코올과 마그네타이트 나노 입자들이 혼합된 자성유체를 다양한 기판에 스핀 코팅하여 촉매 금속 층을 간편하게 형성할 수 있었다. 자성유체 제조 시 혼합된 수용성 폴리비닐알코올은 자성유체용액의 점성을 증가 시켜 주었으며, 이러한 점성의 증가는 스핀 코팅 시 용액과 기판간의 접착력을 증대시켜 주었다. 또한 건조 과정 이후에도 잔류되어 탄소나노튜브 합성 공정 중에 촉매금속이 응집되는 현상을 방지 차여 균일한 입자 크기를 유지하도록 하였다. 이는 고밀도의 수직 배열된 탄소나노튜브의 성장의 직접적인 원인으로 생각된다. 또한 탄소나노 튜브의 대량 합성을 위해서 Si 기판 치에 알루미나와 금속 기판에서도 탄소나노튜브의 성장을 시도하였다.
최근 열전달율을 획기적으로 향상시킬 수 있는 고 열전도성 나노유체가 주목을 받고 있다. 고 열전도성 나노유체는 액상보다 열전도도가 수백~수만 배 높은 고상의 금속 또는 비금속 나노입자를 물이나 오일 등에 미량 균일하게 분산시킴으로써 기존의 유체가 가지지 못한 높은 열전도율과 분산안정성을 갖는 기능성유체를 말한다. 고 열전도성 나노유체는 기존 냉각시스템에서 냉각유체만 교체할 경우에도 열전달 효율을 20% 이상 향상시킬 수 있는 저비용 고효율작동 유체이다. 이 나노유체는 발전설비, 공조설비, 에너지 산업, 석유화학, 화학공업, 제철산업, 가정용 냉난방설비, 자동차 등 산업 전 분야의 열교환시스템에 활용이 가능하다. 따라서 고 열전도성 나노유체는 종래 열효율의 한계를 돌파할 수 있는 에너지 이용 효율 향상 기술의 패러다임을 바꿀 혁신적인 신소재로 여겨지고 있다. 그러나 현재까지 개발된 나노유체는 초기 열전도 특성은 우수하나 장기간 분산안정성이 확보되지 않아 시간이 경과함에 따라 열전도도가 점점 감소하는 경향을 보인다. 또한 탄소나노튜브를 분산한 나노유체의 경우와 같이 유체의 점도가 크게 증가하여 실제 산업에 적용 시 커다란 동력손실을 초래할 수 있으며 열교환시스템에 파울링이 발생할 소지가 크다. 이러한 문제점을 해결하기 위해서는 나노유체에서 열전달이 일어나는 메커니즘이 규명되어야 하지만 아직 명확한 이론이나 가설이 정립되어 있지 않다. 이 논문에서는 나노유체가 높은 열전도율을 보이는 현상을 설명할 수 있는 몇 가지 이론을 살펴 보고 지금까지 개발된 안정성이 아주 높은 나노유체의 열전도 특성을 비교 분석하여 획기적인 열전도성 나노유체 개발 가능성을 살펴보고자 한다. 이를 위해 나노입자의 조성, 유체 내 농도 및 자기장 등이 나노유체의 열전도율에 미치는 영향을 연구하였다.
열분해법을 이용하여 나노 자성입자를 합성하고, 초음파를 인가하여 lecithin을 자성입자 표면에 흡착시켰다. Lecithin의 첨가 농도에 따른 자성입자의 크기 및 포화자화 값의 변화를 측정하였으며, 생물학적 시험을 통하여 자성유체의 최대 투여량과 독성을 조사하였다. 자성입자들의 가열 감량에서 lecithin 첨가 농도가 증가함에 따라 lecithin 흡착층의 두께가 비선형적으로 증가하였으며, 특성상 lecithin 농도가 20%(w/v)일 때 적정 흡착량을 나타내었다. Lecithin이 흡착된 자성입자의 분산성과 자기적 성질은 lecithin의 초음파 노출시간이 1.5h일 경우 가장 우수하였다. 또한, in vitro 시험에서 세포 생존율이 양호한 lecithin 흡착 자성유체의 최대 투여농도는 $32{\mu}g/ml$이었으며, in vivo 시험에서는 lecithin이 흡착된 자성유체가 순수 마그네타이트 자성유체에 비해 생체 안전성이 1.2배 더 높았다.
자성유체에 60Hz의 교류자기장을 인가할 때 발생되는 냉각효과를 해석하기 위해 유한요소법을 결합하였다. 열원으로는 전류가 코일에 흐를 때 생성되는 줄열과 닐운동과 브라운운동으로 야기되는 전력손실에 의한 발열이 있다. 교류자기장은 주파수가 낮기 때문에 줄열이 주요한 열원이 된다. 그러므로 코일에서 자성유체로 일어나는 열전달과 자연대류현상은 코일의 표면에서 일어난다. 자연대류현상을 해석하기 위해서는 자성유체의 부력밀도를 고려해야 한다. 부가적으로 자계의 세기와 온도에 관한 함수인 자화와 자기체적력밀도로 인해 자기대류현상과 같은 강제대류가 일어난다. 이러한 두 가지 대류현상으로 인해 교류자기장을 인가한 자성유체에서 냉각효과가 일어난다. 자기체적력밀도는 유한요소법으로 보간된 가상공극개념을 이용하여 켈빈전자기력밀도를 이끌어 낸 후 이를 수치적으로 이용하여 구하였다. 랑제방함수는 켈빈전자기력밀도와 전력손실을 계산하는데 필요한 비선형 자화율을 고려하기 위해 사용하였다.
자성유체는 암 치료와 질병진단 등과 같은 다양한 분야에서 유용한 응용의 가능성을 갖는다 [1]. 생리적 염도인 중성 pH에서 생체조직과 잘 교합하고, 높은 안정성을 가지는 자성유체는 자성 나노입자 표면에 화학적으로 흡착된 계면활성제 종류에 따라 달라진다 [2]. 본 실험에서는 화학적 공침법을 이용하여 Fe$^{2+}$와 Fe$^{3+}$ 의 몰비가 1:2인 수용액에 pH 12 이상의 과잉 알칼리(NH$_4$OH 12ml)를 첨가시켜 마그네타이트 콜로이드 용액을 제조하였다. 광감제로는 hematoporphyin을 사용하였으며 투입량은 1$\times$$10^{-3}$mol/l 였다. 또한 1차 및 2차 계면활성제로는 decanoic acid와 starch, citric acid, oleic acid 등이 각각 사용되었다. 각 계면활성제가 코팅된 자성미립자의 특성을 조사하기 위해 동결 건조 후 VSM, FT-IR 및 TEM 분석을 수행하여 자기적 특성과 코팅표면의 결합구조 및 미시적 구조를 분석하였다. 그리고, 각각의 계면활성제가 코팅된 자성유체의 독성을 조사하기 위해 rat를 이용한 생체실험이 병행되었다.
It was known conceptually that ferrofluid or air driven flows induced by waste heat energy could generate electric power in surrounding windings by changing the magnetic flux with time through the colis. In the last decade, a ferrohydrodynamics energy harvesting system based on magnetorheology has been investigated experimentally and numerically. However, it was focused on the movement of air droplets or nanoparticles in the ferrofluid, therefore the electric power generated in the device was not enough to use practically. In this study, we developed the electrical generation concept based on magnetic particle flows for harvesting large amount of electric power and conducted measurements and computations for verifying the concept of electrical generation. In order to obtain a significant amount of electrical energy by using magnetic particle flows, it was critical to control the magnetization direction of magnetic nanoparticles in the fluid by a permanent magnet and to change the magnetic flux with time by air bubbles when the fluid flows in a millimeter-sized channel passed through surrounding windings.
본 연구에서는 나노입자 크기를 가지는 강자성체 미립자로 구성된 자성유체의 거동을 예측할 수 있는 수학적 모델링을 유한요소법(Finite element method)을 이용하여 수치적으로 접근하였다. 이를 위하여 뉴턴유체의 거동을 예측하는 지배방정식과 함께 자기력에 반응하는 강자성체의 거동을 예측하기 위한 Maxwell 자장 방정식 및 자성입자의 회전효과를 풀 수 있는 자화의 구성방정식을 추가로 고려하였다. 더불어 유한요소법을 이용하여 각 방정식을 이산화하고 속도와 온도의 경계조건을 이용하여 자성유체의 거동을 예측하였다. 본 모델링의 적합성을 검증하기 위하여 Davis(1983) 및 Fusegi et al.(1991)의 연구결과와 비교하였고, 각각 5.5 % 및 2.7 % 범위에서 비교적 정확하게 예측되었다.
게놈 프로젝트 이후 급격하게 발전하고 있는 나노자성-바이오 의료 컨버젼스 기술은 신약 개발 프로세스, 임상 진단 등의 분야에 혁신적인 변화를 일으킬 것으로 주목을 받고 있다. 이 중에서 차세대 바이오 에세이 기술은 암, 임상 유전적 질병의 조기진단 및 현장진단(point-of-care)과 같은 유비쿼터스 진단(U-health care)시대에 부응하는 휴대화 자동화 고속화 저비용화 사용편의성뿐만 아니라 post-genome 시대의 요구에 맞는 대용량화 다중 감지화 요건을 충족하는 기술이다. 본 논고에서는 바이오 에세이용 자기센서 및 미세유체역학하에서 바이오 분자 이송용 온 칩 자석(on-chip magnet) 연구에 대해서 소개하고자 한다.
본 연구에서는 자성유체의 열-유동 특성을 고찰하기 위하여 밀폐된 정방형관내 자성유체의 열-유동 특성에 관하여 GSMAC법을 이용하여 수치해석적으로 접근하였다. 자성유체의 지배방정식은 자연대류의 연속, 운동량 및 에너지 방정식과 나노자장입자의 자장 및 자화방정식을 추가로 고려하였고 밀폐된 정방형관의 외부에서 가하는 인가자장 세기 및 방향에 따른 자성유체의 온도 및 열전달계수 등의 열전달 특성과 유선 및 등온선도 등의 유동 특성의 변화를 규명하였다. 그 결과, 정방형관내 자장이 수평방향으로 인가될 경우 인가자장 H=-6000에서 평균 Nusselt 수가 0.1592가 되었으며, 자성유체의 열-유동 현상을 인가자장의 세기 및 방향에 따라 제어할 수 있게 되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.