고분해능복사계(AVHRR) 자료로부터 산출한 아시아지역 지면피복 분류자료들 (United States Geological Survey: USGS, International Geosphere Biosphere Programme: IGBP, University of Maryland: UMd)의 분류특성을 분석하였으며 이를 근거로 하여 이 지역에 대한 지면피복의 분류를 시도하였다. 서로 다른 지면피복 분류 자료들의 비교를 위하여 지도 투영법을 일치시켰으며 지면피복 정의가 유사한 유형들만 비교하였다. 세 지면피복 자료에서 분류가 모두 일치하는 비율은 33.57%이고 3 자료 중 두 자료에서 분류가 일치하는 비율은 49.69%로 나타났다. 전체적으로 나대지(사막), 도시 및 혼합림과 같이 식생의 생물리적 특성이 뚜렷한 유형들에서는 분류의 일치율이 높게 나타났다. 반면에 농지, 낙엽활엽수림, 및 낙엽침엽수렴과 같이 식생의 생물리적 특성이 유사한 유형에서는 일치율이 낮게 나타났다. 분류에 사용된 기본 입력자료수, 지면피복 유형수,분류기법 및 입력 자료의 전처리 수준 등이 지면피복 분류 결과에 차이를 유발한 것으로 판단된다. 지면피복 자료들의 비교결과와 각 유형별 식생지수의 평균 계절변동 특성을 이용하여 이 지역에 대한 지면피복 분류자료를 보완하였다.
Monte Carlo 기법을 이용하여 저수지군으로부터 위험도나 신뢰도를 고려한 시스템 편익을 최적화하기 위해서는 수많은 모의발생 유입량 자료군을 이용하여야 한다. 본 연구에서는 저수지군 연계운영을 위한 모의 발생 유입량 자료를 시스템 목적함수나 운영기간들을 고려하여 전처리함으로써 수많은 모의 발생 자료군으로부터 이산화된 확율값과 운영기간을 갖는 극히 제한된 대표 유입량을 선택한다. 선택된 대표 유입량 자료를 사용하여 확정론적 최적화 기법에 의거 이산화된 위험도나 신뢰도 수준을 갖는 기대편익을 산정하게 된다. 이와 같은 기법을 5개 저수지를 고려한 한강수계 저수지 시스템으로부터 전처리 된 평가함수별 신뢰도 수준을 갖는 발전편익 산정에 적용하였으며, 적용결과 신뢰도를 고려한 기대편익은 전형적인 Monte Carlo 기법에 의한 결과와 비슷한 수중이었으나 훨씬 적은 계산만을 요구하였다.
다중 값이란 속성 값이 집합인 것을 말한다. 즉, 관계형 데이터베이스에서 자료 유형이 집합인 속성을 의미한다. 이러한 다중 값 속성 처리는 기존 데이터마이닝 기술 자체로는 처리한 수 없으며 후처리나 선처리 과정을 이용하여 처리하고 있다. 전처리나 후처리 과정을 통해 처리할 경우 수행과장에 있어 많은 시간이 소요되고 혹은 타당하지 않은 규칙이 생성되는 문제점을 가지고 있다. 특히 연관화 기법 특성상 분석하고자 할 항목이 증가할수록 연관성의 수가 지수(exponential)단위이기 때문에 이를 해결하는데는 상당한 어려움이 따르게 된다. 본 논문에서는 관계형 데이터베이스 테이블 구조에서 데이터 마이닝의 수행을 위한 전처리나 후처리의 과정을 고려하지 않음으로 위에서 언급된 문제점들을 해결하고자 한다. 특히 데이터 변환 작업 없이 정량적(Quantitative)연관 규칙과 연관 규칙(Market Basket Analysis)의 혼합 형태의 규칙을 생성할 수 있게끔 알고리즘을 확장하여 보다 효율적인 규칙이 생성될 수 있도록 한다. 마지막으로 Each Movie 데이터를 사용하여 확장한 알고리즘의 다중 값 속성 처리 방법의 효율성과 타탕성을 검증한다.
이 논문에서는 지진에 의한 지각변동 분석에서 측지학적 요소만을 구분하고자 하는 목적으로 GNSS 자료를 전처리하는 전략을 연구하였다. 이를 위해 GNSS 자료처리 결과의 해석에 앞서 GNSS 좌표 시계열에서 나타나는 위신호들을 검출하고 제거하였다. GNSS 관측소는 한반도가 포함된 큰 지각판 위에 위치하므로 판의 운동으로 인한 속도가 좌표 시계열에 포함된다. 그리고 일부 관측소 주변에 위치한 나무들은 계절에 따라 성장변화가 일어나기 때문에 계절적 신호특성이 GNSS 좌표 시계열에 반영된다. 따라서 오일러축에 의한 지각판 운동효과를 정확히 제거하기 위해 축의 위치와 각속도를 한반도 지각판에 맞게 새롭게 추정하였고 이에 대한 검증을 수행하였다. 그리고 1년 주기로 나타나는 계절변동 신호를 추정해 각 관측소의 좌표시계열에 반영하였다. 두 효과를 제거함으로써 지진에 의한 영향을 측지학적으로 분석할 수 있다. 이를 이용해 2011년 동일본 대지진에 의한 지각변위 예비 분석을 수행하였다.
과학적 시각화인 한 분야인 등치선도 자동생성 알고리즘은 주로 규칙적인 삭가형 격자 위에서 정의된 자료에 대해서 연구를 진행되어 왔다. 하지만 기상자료 관측과 같은 실제 자료 추출 상황에서 모든 격자에서 자료를 얻는 것이 불가능하다. 자료 추출장비, 방법의 특성상 모든 격자에서 자료 값을 얻을수없다. 자료가 추출되지 않는 모든 격자에서 필요한 자료 값을 구하기 위하여 추출된 자료에 적당한 보간 법을 적용하여 근사값을 할당한다. 본 논문에서는격자형 자료를 사용하지 않고 비격자형 자료를 사용해서 등치선도를 자동으로 생성하는 알고리즘을 제안하였다. 거리가 중보간법을 이용하여 전처리된 사각형 격자형 자룔를 사용하는대신 비격자형 자료를 직접사용하여 삼각형 자료 연결으로 정의하였다. 제안된 알고리즘은 격자형 자료 연결에 근거한 등치선도를 작성한다. 이 알고리즘은 숙련된 기상도 제작자가 기상도를 작성하는 원칙에 근거를 두고 있다. 새롭게 제안된 알고리즘은 전통적이 알고리즘에 비해서 다음과 같은 장점을 갖고 있다.제안된 알고리즘은 전처리 과정에서 추출된 자료를 보간 할 필요 없이 추출된 자료만으로 등치선도를 작성한다. 그리고 격자에 보간법이 적용되었을때 발생하는 자료의 왜곡이 없다.
현재 수치예보 시스템은 항공기, 위성 등 다양한 센서에서 얻은 다종 관측 데이터를 동화하여 대기 상태를 추정하고 있지만, 관측변수 또는 물리량이 서로 다른 관측들을 처리하기 위한 계산 복잡도가 매우 높다. 본 연구에서 기존 시스템의 계산 효율성을 개선하여 관측을 평가하거나 전처리하는 데에 효율적으로 활용하기 위해, 각 관측의 특성을 고려한 자기 지도학습 방법을 통해 멀티모달 기상관측으로부터 실제 대기 상태를 추정하는 방법론을 제안하고자 한다. 비균질적으로 수집되는 멀티모달 기상관측 데이터를 융합하기 위해, (i) 기상관측의 heterogeneous network를 구축하여 개별 관측의 위상정보를 표현하고, (ii) pretext task 기반의 self-supervised learning을 바탕으로 개별 관측의 특성을 표현한다. (iii) Graph neural network 기반의 예측 모델을 통해 실제에 가까운 대기 상태를 추정한다. 제안하는 모델은 대규모 수치 시뮬레이션 시스템으로 수행되는 기존 기술의 한계점을 개선함으로써, 이상 관측 탐지, 관측의 편차 보정, 관측영향 평가 등 관측 전처리 기술로 활용할 수 있다.
본 연구에서는 항내 파고를 신속하고 비교적 정확하게 예측할 수 있는 딥러닝 모델을 구축하였다.다양한 머신러닝 기법들을 외해파랑의 항내로 전파 변형 특성을 감안하여 모델에 적용하였으며 스웰로 인해 하역중단 문제가 심각했던 포항신항을 모델적용 대상지로 선정하였다. 모델의 입력 자료는 외해의 파고, 주기, 파향 그리고 출력 및 예측 자료로는 항내 파고자료로 하여 모델을 학습시켰다. 이때 자료의 전처리 과정으로 항내·외 파랑 시계열자료의 상관성을 감안하여 파향 자료를 분리하는 방법을 적용하고 딥러닝 기법을 이용하여 모델을 학습하였다. 결과적으로 모델을 통해 예측한 값이 항내관측치의 파고 시계열자료를 잘 재현하였으며 모델의 안정성을 크게 향상시켰다.
웹 마이닝, 바이오정보학, 통계적 자료 분석 등 여러 분야에서 매우 다양한 형태의 결측치가 발생하여 학습 데이터를 희소하게 만든다. 결측치는 주로 전처리 과정에서 가장 기본적인 평균과 최빈수뿐만 아니라 조건부 평균, 나무 모형, 그리고 마코프체인 몬테칼로 기법과 같은 결측치 대체 기법들을 적용하여 추정된 값에 의해 대체된다. 그런데 주어진 데이터의 결측치 비율이 크게 되면 기존의 결측치 대체 방법들의 예측의 정확도는 낮아지는 특성을 보인다. 또한 데이터의 결측치 비율이 증가할수록 사용 가능한 결측치 대체 방법들의 수는 제한된다. 이러한 문제점을 해결하기 위하여 본 논문에서는 통계적 학습 이론 중에서 Vapnik의 Support Vector Regression을 데이터 전처리 과정에 알맞게 변형하여 적용하였다. 제안 방법을 이용하여 결측치 비율이 큰 희소 데이터의 전처리도 가능할 수 있도록 하였다 UCI machine learning repository로부터 얻어진 데이터를 이용하여 제안 방법의 성능을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.