• Title/Summary/Keyword: 자동 화자 인식

Search Result 48, Processing Time 0.024 seconds

Automatic Lipreading Using Color Lip Images and Principal Component Analysis (컬러 입술영상과 주성분분석을 이용한 자동 독순)

  • Lee, Jong-Seok;Park, Cheol-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.15B no.3
    • /
    • pp.229-236
    • /
    • 2008
  • This paper examines effectiveness of using color images instead of grayscale ones for automatic lipreading. First, we show the effect of color information for performance of humans' lipreading. Then, we compare the performance of automatic lipreading using features obtained by applying principal component analysis to grayscale and color images. From the experiments for various color representations, it is shown that color information is useful for improving performance of automatic lipreading; the best performance is obtained by using the RGB color components, where the average relative error reductions for clean and noisy conditions are 4.7% and 13.0%, respectively.

Fast Algorithm for Recognition of Korean Isolated Words (한국어 고립단어인식을 위한 고속 알고리즘)

  • 남명우;박규홍;정상국;노승용
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.50-55
    • /
    • 2001
  • This paper presents a korean isolated words recognition algorithm which used new endpoint detection method, auditory model, 2D-DCT and new distance measure. Advantages of the proposed algorithm are simple hardware construction and fast recognition time than conventional algorithms. For comparison with conventional algorithm, we used DTW method. At result, we got similar recognition rate for speaker dependent korean isolated words and better it for speaker independent korean isolated words. And recognition time of proposed algorithm was 200 times faster than DTW algorithm. Proposed algorithm had a good result in noise environments too.

  • PDF

The Development of a Speech Recognition System with Large Channel over the PSTN and it's Field Trial (대용량 음성인식 전화정보시스템 개발 및 시험운용)

  • 장경애
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.08a
    • /
    • pp.43-47
    • /
    • 1998
  • 대용량, 대어휘, 화자독립 음성인식시스템의 개발과 1998년 3월 16일부터 일반인들을 대상으로 시험운용하고 있는 음성인식 증권서비스에 대한 것이다. 이 시스템은 상용서비스를 위하여 한 대당 120명이 동시에 사용할 수 있는 대용량 시스템으로 HMM 기술에 기반을 둔 고립단어 인식 시스템이다. 이 시스템은 음소를 기본 인식단위로 사용하여 인식단어의 추가 및 변경이 자유로우며, 추가 또는 변경된 회사명칭을 운용자의 개입 없이 자동적으로 시스템에 반영될 수 있다. 본 서비스의 개발과정에서 인식대상단어를 결정하는데 발생된 문제점과 인식단어의 변경방법 및 적용후의 효과 등을 살펴보았다.

  • PDF

Speech Recognition System for Home Automation Using DSP (DSP를 이용한 홈 오토메이션용 음성인식 시스템의 실시간 구현)

  • Kim I-Jae;Kim Jun-sung;Yang Sung-il;Kwon Y.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.171-174
    • /
    • 2000
  • 본 논문에서는 홈 오토메이션 시스템을 음성인식을 도입하여 설계하였다. 많은 계산량과 방대한 양의 데이터의 처리를 요구하는 음성인식을 DSP(Digital Signal Processor)를 통하여 구현해 보고자 본 연구를 수행하였다. 이를 위해 실시간 끝점검출기를 이용하여 추가의 입력장치가 필요하지 않도록 시스템을 구성하였다. 특징벡터로는 LPC로부터 유도한 10차의 cepstrum과 log 스케일 에너지를 이용하였고, 음소수에 따라 상태의 수를 다르게 구성한 DHMM(Discrete Hidden Marcov Model)을 인식기로 사용하였다. 인식단어는 가정 자동화를 위하여 많이 쓰일 수 있는 10개의 단어를 선택하여 화자 독립으로 인식을 수행하였다. 또한 단어가 인식이 되면 인식된 단어에 대해서 현재의 상태를 음성으로 알려주고 이에 대해 자동으로 실행하도록 시스템을 구성하였다.

  • PDF

A Study on Speech Recognition in a Running Automobile (주행중인 자동차 환경에서의 음성인식 연구)

  • 양진우;김순협
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.3-8
    • /
    • 2000
  • In this paper, we studied design and implementation of a robust speech recognition system in noisy car environment. The reference pattern used in the system is DMS(Dynamic Multi-Section). Two separate acoustic models, which are selected automatically depending on the noisy car environment for the speech in a car moving at below 80km/h and over 80km/h are proposed. PLP(Perceptual Linear Predictive) of order 13 is used for the feature vector and OSDP (One-Stage Dynamic Programming) is used for decoding. The system also has the function of editing the phone-book for voice dialing. The system yields a recognition rate of 89.75% for male speakers in SI (speaker independent) mode in a car running on a cemented express way at over 80km/h with a vocabulary of 33 words. The system also yields a recognition rate of 92.29% for male speakers in SI mode in a car running on a paved express way at over 80km/h.

  • PDF

Noise filtering method based on voice frequency correlation to increase STT efficiency (STT 효율 증대를 위한 음성 주파수 correlation 기반 노이즈 필터링 방안)

  • Lim, Jiwon;Hwang, Yonghae;Kim, Kyuheon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.176-179
    • /
    • 2021
  • 현재 음성인식 기술은 인공지능 비서, 전화자동응답, 네비게이션 등 다양한 분야에서 사용되고 있으며 인간의 음성을 디바이스에 전달하기 위해 음성 신호를 텍스트로 변환하는 Speech-To-Text (STT) 기술을 필요로 한다. 초기의 STT 기술의 대부분은 확률 통계 방식인 Hidden Markov Model (HMM)기반으로 이루졌으며, 딥러닝 기술의 발전으로 HMM과 함께 Recurrent Nural Network (RNN), Deep Nural Network (DNN) 기법을 사용함으로써 과거보다 단어 인식 오류를 개선하며 20%의 성능 향상을 이루어냈다. 그러나 다수의 화자 혹은 생활소음, 노래 등 소음이 있는 주변 환경의 간섭 신호 영향을 받으면 인식 정확도에 차이가 발생한다. 본 논문에서는 이러한 문제를 해결하기 위하여 음성 신호를 추출하여 주파수성분을 분석하고 오디오 신호 사이의 주파수 영역 correlation 연산을 통해 음성 신호와 노이즈 신호를 구분하는 것으로 STT 인식률을 높이고, 목소리 신호를 더욱 효율적으로 STT 기술에 입력하기 위한 방안을 제안한다.

  • PDF

A Study on the Spoken Korean Citynames Using Multi-Layered Perceptron of Back-Propagation Algorithm (오차 역전파 알고리즘을 갖는 MLP를 이용한 한국 지명 인식에 대한 연구)

  • Song, Do-Sun;Lee, Jae-Gheon;Kim, Seok-Dong;Lee, Haing-Sei
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.6
    • /
    • pp.5-14
    • /
    • 1994
  • This paper is about an experiment of speaker-independent automatic Korean spoken words recognition using Multi-Layered Perceptron and Error Back-propagation algorithm. The object words are 50 citynames of D.D.D local numbers. 43 of those are 2 syllables and the rest 7 are 3 syllables. The words were not segmented into syllables or phonemes, and some feature components extracted from the words in equal gap were applied to the neural network. That led independent result on the speech duration, and the PARCOR coefficients calculated from the frames using linear predictive analysis were employed as feature components. This paper tried to find out the optimum conditions through 4 differerent experiments which are comparison between total and pre-classified training, dependency of recognition rate on the number of frames and PAROCR order, recognition change due to the number of neurons in the hidden layer, and the comparison of the output pattern composition method of output neurons. As a result, the recognition rate of $89.6\%$ is obtaimed through the research.

  • PDF

The Error Pattern Analysis of the HMM-Based Automatic Phoneme Segmentation (HMM기반 자동음소분할기의 음소분할 오류 유형 분석)

  • Kim Min-Je;Lee Jung-Chul;Kim Jong-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.5
    • /
    • pp.213-221
    • /
    • 2006
  • Phone segmentation of speech waveform is especially important for concatenative text to speech synthesis which uses segmented corpora for the construction of synthetic units. because the quality of synthesized speech depends critically on the accuracy of the segmentation. In the beginning. the phone segmentation was manually performed. but it brings the huge effort and the large time delay. HMM-based approaches adopted from automatic speech recognition are most widely used for automatic segmentation in speech synthesis, providing a consistent and accurate phone labeling scheme. Even the HMM-based approach has been successful, it may locate a phone boundary at a different position than expected. In this paper. we categorized adjacent phoneme pairs and analyzed the mismatches between hand-labeled transcriptions and HMM-based labels. Then we described the dominant error patterns that must be improved for the speech synthesis. For the experiment. hand labeled standard Korean speech DB from ETRI was used as a reference DB. Time difference larger than 20ms between hand-labeled phoneme boundary and auto-aligned boundary is treated as an automatic segmentation error. Our experimental results from female speaker revealed that plosive-vowel, affricate-vowel and vowel-liquid pairs showed high accuracies, 99%, 99.5% and 99% respectively. But stop-nasal, stop-liquid and nasal-liquid pairs showed very low accuracies, 45%, 50% and 55%. And these from male speaker revealed similar tendency.

Development of Voice Dialing System based on Keyword Spotting Technique (핵심어 추출 기반 음성 다이얼링 시스템 개발)

  • Park, Jeon-Gue;Suh, Sang-Weon;Han, Mun-Sung
    • Annual Conference on Human and Language Technology
    • /
    • 1996.10a
    • /
    • pp.153-157
    • /
    • 1996
  • 본 논문은 연속 분포 HMM을 사용한 핵심어 추출기법(Keyword Spotting)과 화자 인식에 기반한 음성 다이얼링 및 부서 안내에 관한 것이다. 개발된 시스템은 상대방의 이름, 직책, 존칭 등에 감탄사나 명령어 등이 혼합된 형태의 자연스런 음성 문장으로부터 다이얼링과 안내에 필요한 핵심어를 자동 추출하고 있다. 핵심 단어의 사용에는 자연성을 고려하여 문법적 제약을 최소한으로 두었으며, 각 단어 모델에 대해서는 음소의 갯수 더하기 $3{\sim}4$개의 상태 수와 3개 정도의 mixture component로써 좌우향 모델을, 묵음모델에 대해서는 2개 상태의 ergodic형 모델을 구성하였다. 인식에 있어서는 프레임 동기 One-Pass 비터비 알고리즘과 beam pruning을 채택하였으며, 인식에 사용된 어휘는 36개의 성명, 8개의 직위 및 존칭, 5개 정도의 호출어, 부탁을 나타내는 동사 및 그 활용이 10개 정도이다. 약 $3{\sim}6$개 정도의 단어로 구성된 문장을 실시간($1{\sim}3$초이내)에 인식하고, 약 98% 정도의 핵심어 인식 성능을 나타내고 있다.

  • PDF

Automatic Recognition of Pitch Accent Using Distributed Time-Delay Recursive Neural Network (분산 시간지연 회귀신경망을 이용한 피치 악센트 자동 인식)

  • Kim Sung-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.277-281
    • /
    • 2006
  • This paper presents a method for the automatic recognition of pitch accents over syllables. The method that we propose is based on the time-delay recursive neural network (TDRNN). which is a neural network classifier with two different representation of dynamic context: the delayed input nodes allow the representation of an explicit trajectory F0(t) along time. while the recursive nodes provide long-term context information that reflects the characteristics of pitch accentuation in spoken English. We apply the TDRNN to pitch accent recognition in two forms: in the normal TDRNN. all of the prosodic features (pitch. energy, duration) are used as an entire set in a single TDRNN. while in the distributed TDRNN. the network consists of several TDRNNs each taking a single prosodic feature as the input. The final output of the distributed TDRNN is weighted sum of the output of individual TDRNN. We used the Boston Radio News Corpus (BRNC) for the experiments on the speaker-independent pitch accent recognition. π 1e experimental results show that the distributed TDRNN exhibits an average recognition accuracy of 83.64% over both pitch events and non-events.