• Title/Summary/Keyword: 자동 진단 시스템

Search Result 284, Processing Time 0.031 seconds

Machine Tool State Monitoring Using Hierarchical Convolution Neural Network (계층적 컨볼루션 신경망을 이용한 공작기계의 공구 상태 진단)

  • Kyeong-Min Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.2
    • /
    • pp.84-90
    • /
    • 2022
  • Machine tool state monitoring is a process that automatically detects the states of machine. In the manufacturing process, the efficiency of machining and the quality of the product are affected by the condition of the tool. Wear and broken tools can cause more serious problems in process performance and lower product quality. Therefore, it is necessary to develop a system to prevent tool wear and damage during the process so that the tool can be replaced in a timely manner. This paper proposes a method for diagnosing five tool states using a deep learning-based hierarchical convolutional neural network to change tools at the right time. The one-dimensional acoustic signal generated when the machine cuts the workpiece is converted into a frequency-based power spectral density two-dimensional image and use as an input for a convolutional neural network. The learning model diagnoses five tool states through three hierarchical steps. The proposed method showed high accuracy compared to the conventional method. In addition, it will be able to be utilized in a smart factory fault diagnosis system that can monitor various machine tools through real-time connecting.

Development of SV30 Detection Algorithm and Turbidity Assumption Model using Image Analysis Method (이미지 분석기법을 이용한 SV30 자동감지방법 및 탁도 추정 모델 개발)

  • Choi, Soo-Jung;Kim, Ye-Jin;Yoom, Hoon-Sik;Cha, Jae-Hwan;Choi, Jae-Hoon;Kim, Chang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.2
    • /
    • pp.168-174
    • /
    • 2008
  • Diagnosis on setteability based on human operator's experimental knowledge, which could be established by long term operation, is a limit factor to construction of automation control system in wastewater treatment plant. On-line SVI(Sludge Volume Index) analyzer was developed which can measure SV30 automatically by image capture and image analysis method. In this paper, information got by settling process was studied using On-line SVI analyzer for better operation & management of WWTPs. First, SV30 detection algorithm was developed using image capture and image analysis for settling test and it showed that automatic detection is feasible even if deflocculation and bulking was occurred. Second, turbidity assessment model was developed using image analysis.

The Study on the Development of Automatic Rebar Placement System Applying Selection Method of Optimum Reinforcing Bar Group on Shear Wall (최적배근그룹 선정방법을 적용한 전단벽체의 자동배근 시스템 개발에 관한 연구)

  • Cho, Young-Sang;Kim, Dong-Eun;Jin, Hyun-Ah;Jang, Hyun-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.81-89
    • /
    • 2015
  • This study takes shear wall of reinforced concrete structure as study object, and the purpose of this study is to suggest structure BIM based on automatic reinforcing bar placement system applying set-based design through the most optimum reinforcing bar placement group that was selected by applying AHP (analytical hierarchy process) method from design step. For this, the most optimum reinforcing bar placement group was selected by pairwise comparison analysis on complex standard of multiple alternatives. And shear wall automatic reinforcing bar placement system has been developed, which can automatically generate members and arrange reinforcing bar by structure design algorithm and using open API (application programming interface) provided by a BIM software vendor. As a result, the most optimum reinforcing bar placement group of the highest weight, ALT1, was selected and was generated using Tekla Structure program.

Classification of Diabetic Retinopathy using Mask R-CNN and Random Forest Method

  • Jung, Younghoon;Kim, Daewon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.29-40
    • /
    • 2022
  • In this paper, we studied a system that detects and analyzes the pathological features of diabetic retinopathy using Mask R-CNN and a Random Forest classifier. Those are one of the deep learning techniques and automatically diagnoses diabetic retinopathy. Diabetic retinopathy can be diagnosed through fundus images taken with special equipment. Brightness, color tone, and contrast may vary depending on the device. Research and development of an automatic diagnosis system using artificial intelligence to help ophthalmologists make medical judgments possible. This system detects pathological features such as microvascular perfusion and retinal hemorrhage using the Mask R-CNN technique. It also diagnoses normal and abnormal conditions of the eye by using a Random Forest classifier after pre-processing. In order to improve the detection performance of the Mask R-CNN algorithm, image augmentation was performed and learning procedure was conducted. Dice similarity coefficients and mean accuracy were used as evaluation indicators to measure detection accuracy. The Faster R-CNN method was used as a control group, and the detection performance of the Mask R-CNN method through this study showed an average of 90% accuracy through Dice coefficients. In the case of mean accuracy it showed 91% accuracy. When diabetic retinopathy was diagnosed by learning a Random Forest classifier based on the detected pathological symptoms, the accuracy was 99%.

Intelligence Medical Diagnosis System using Cellular Phone (휴대폰을 이용한 지능형 의료진단 시스템)

  • Hong, You-Sik;Lee, Sang-Suk;Nam, Dong-Hyun;Lee, Woo-Beom;Choi, Jong-Gu;Song, Young-Jun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.2
    • /
    • pp.213-218
    • /
    • 2011
  • In this paper, we have developed a tongue diagnosis system using fuzzy rules. A healthy person's tongue is red in color and has less tongue coating. However, when a person suffers from a disease, the color of their tongue changes from red to white, blue, or black. Therefore, it can analyze patient's health if analyze color and coated tongue of tongue. Medical diagnosis system can automatically determines the symptoms of the disease of a patient and their and calculate the optimal acupuncture time on the basis of the patient's physical conditions, illness conditions, and age from any place and at any time. The computer simulation results have shown that electro-acupuncture administered by using the medical diagnosis system developed in this study is more effective than the conventional method.

Development of Mobile Robot Systems for Automatic Diagnosis of Boiler Tubes in Fossil Power Plants and Large Size Pipelines (화력발전소 보일러 튜브 및 대형 유체수송관 자동 진단을 위한 이동로봇 시스템 개발)

  • Park, Sang-Deok;Jeong, Hee-Don;Lim, Zhong-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.3
    • /
    • pp.254-260
    • /
    • 2002
  • In this study, two types of mobile robotic systems using NDT (Non-destructive testing) method are developed for automatic diagnosis of the boiler tubes and large size pipelines. The developed mobile robots crawl the outer surface of the tubes or pipelines and detect in-pipe defects such as pinholes, cracks and thickness reduction by corrosion and/or erosion using EMAT (Electro-magnetic Acoustic Transducer). Automation of fault detection by means of mobile robotic systems for these large-scale structures helps to prevent significant troubles without danger of human beings under harmful environment.

Application of SWAT model for simulating future runoff and water quaility under climate change in cheongmicheon watershed (청미천 유역의 미래 유출 및 수질모의를 위한 SWAT 모형의 적용)

  • Kim, Sang Ug;Bae, Hyeong;Bae, Hyeong;Bae, Hyeong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.547-547
    • /
    • 2016
  • 최근 지구온난화로 인한 기후변화는 우리 삶에 다양하게 영향을 미치고 있다. 강수 또는 기온의 비정상성으로 대표되는 기후변화에 따라 수문순환의 변화 역시 자명하게 받아들여지고 있다. 기후변화에 따른 위험요소를 전망하기 위한 최우선 사항은 수문상황을 명확하게 진단하는 것이고 그 다음은 현재기후를 대비 미래의 변화를 전망하는 것이다. 그러나 우리나라는 수문관측의 역사가 짧고 관측 자료의 불확실성으로 인하여 수문상황의 진단을 위해 수문모형의 모의에 의존하는 경우가 많다. 일반적으로 수문모형은 입력 자료와 지형자료를 구축하고 주요 매개변수를 선택하여, 매개변수를 변화시켜가며 관측에 가장 가까운 결과를 가져오는 상태를 구성한다. 이와 같은 과정은 수문모형의 매개변수 보정이라 불리우며, 사용자의 직관에 따른 시행착오법에 따른 수동보정 방법이 사용될 수도 있고 특정 목적함수를 채택하여 수학적 알고리즘에 의해 매개변수를 보정하는 자동보정 방법이 사용될 수도 있다. 그러나 미래 수문변화 전망은 특정 유역을 대상으로 장기간의 수문자료를 모의하는 것이므로 수동보정보다는 자동보정이 보다 신뢰성 있는 결과를 도출하는 것으로 알려져 있다. 따라서 본 연구에서는 청미천 유역의 기후변화로 인한 미래 수문상황의 변화를 모의함에 있어 강우 유출모형 중 하나인 SWAT 모형을 이용하였으며, 신뢰도 있는 매개변수의 추정을 위하여 SWAT-CUP을 이용하여 매개변수를 객관적으로 최적화하였다.

  • PDF

Analysis System of Endoscopic Image of Early Gastric Cancer (조기 위암의 내시경 영상 분석 시스템)

  • Lim Eun-Kyung;Kim Gwang-Ha;Kim Kwang-Baek
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.255-260
    • /
    • 2005
  • 위암은 국내 암발생 및 사망률의 상당 부분을 차지하고 있으며, 이러한 조기 위암의 발견은 치료 및 예후에 있어서 아주 중요하다. 본 논문에서는 조기 위암의 진단을 위해 위 내시경 영상에서 색상 변화를 이용해 이상 부위를 검출하여 검사자에게 조직적인 정보를 제공하는 시스템을 제안한다. 어느 정도의 진행이 이루어진 염증과 암은 쉽게 판단할 수 있지만, 조기의 염증이나 암의 경우에는 주의 깊게 보지 않는 경우에는 병변의 진단이 쉽지 않다. 본 논문에서는 위 내시경 영상을 IHB 채널로 변환시키고 조명에 의해 발생하는 잡음을 제거하며 자동으로 암 의심 영역을 검출하여 검사자에게 제공하거나 검사자에 의해 설정된 영역에 대한 조직적인 표면 정보를 제공한다. 본 논문의 연구는 추출된 이상 부위가 암을 확진할 수 없지만, 인간이 쉽게 인지하기 어려운 이상부위(암 의심 영역)를 추출하여 검사자에게 주의를 요구함으로써 일 처리를 줄이고 부과적인 정보를 제공한다. 그리고 검사추가 지정한 영역에 대해서도 조직적인 정보를 제공한다. 제안된 위 내시경 영상 분석 방법의 효율성을 확인하기 위해서 실제 내시경 영상들을 대상으로 실험한 결과, 제안된 방법이 위 내시경 영상 분석에 효율적임을 확인하였다.

  • PDF

Intracerebral Hemorrhage Auto Recognition in Computed Tomography Images (CT 영상에서 뇌출혈의 자동인식)

  • Choi, Seok-Yoon;Kang, Se-Sik;Kim, Chang-Soo;Kim, Jung-Hoon;Kim, Dong-Hyun;Ye, Soo-Young;Ko, Seong-Jin
    • Journal of radiological science and technology
    • /
    • v.36 no.2
    • /
    • pp.141-148
    • /
    • 2013
  • The CT examination sometimes fail to localize the cerebral hemorrhage part depending on the seriousness and may embarrass the pathologist if he/she is not trained enough for emergencies. Therefore, an assisting role is necessary for examination, automatic and quick detection of the cerebral hemorrhage part, and supply of the quantitative information in emergencies. the computer based automatic detection and recognition system may be of a great service to the bleeding part detection. As a result of this research, we succeeded not only in automatic detection of the cerebral hemorrhage part by grafting threshold value handling, morphological operation, and roundness calculation onto the bleeding part but also in development of the PCA based classifier to screen any wrong choice in the detection candidate group. We think if we apply the new developed system to the cerebral hemorrhage patient in his critical condition, it will be very valuable data to the medical team for operation planning.

관심 폭발, 끓인 라면자판기

  • 한국자동판매기공업협회
    • Vending industry
    • /
    • v.3 no.1 s.9
    • /
    • pp.61-63
    • /
    • 2004
  • 자판기에서 라면이 끓여져 나온다면? 소비자들의 반응은 크게 두 가지로 축약된다. 라면이 자동으로 끓여지는 시스템에 신기해하거나, 김이 모락모락 나는 라면에 군침이 절로 들거나 할 것이다. 이같은 반응은 지난 10월 16일부터 19일까지 개최되었던 Vending Korea 2003을 통해 입증되었다. 당시 끓인 라면 자판기 부스 앞으로는 많은 참관객들의 발길로 북적였다. 참관객들은 이 이색자판기에 제공되는 라면을 시식하려 긴 줄을 서는 것을 마다라지 않았고, 사업적으로 높은 관심을 보이는 사람이 많았다. 이같은 반응이라면 시장에서도 뜨는 것은 시간문제 일듯 보였다. 일단 많은 관심을 끄는데 성공한 이 아이템은 식품 자판기 분야의 새로운 인기제품으로 급부상을 노리고 있다. 뉴 트랜드 상품으로 끓인 자판기가 시장까지 후끈 달구어 낼 수 있는지 그 가능성을 집중 진단했다.

  • PDF