• 제목/요약/키워드: 자동 유사 문장 선별

검색결과 4건 처리시간 0.04초

초등 글쓰기 교육을 위한 유사 문장 자동 선별 (Automatic Selection of Similar Sentences for Teaching Writing in Elementary School)

  • 박영기
    • 정보교육학회논문지
    • /
    • 제20권4호
    • /
    • pp.333-340
    • /
    • 2016
  • 자신이 쓴 문장과 유사한 문장을 살펴보는 것은 초등 글쓰기 교육을 위한 효과적인 방법 중 하나이지만, 매번 글을 쓸 때마다 교사의 지도가 필요하기 때문에 현실적으로 활용하기 쉽지 않다. 본 논문에서는 이 한계를 극복하기 위해 컴퓨터가 자동으로 자신이 쓴 문장과 유사한 문장을 실시간으로 선별해 주는 방법을 제안한다. 이 방법은 단어의 구성 성분을 쪼개는 단계, 쪼갠 단어를 입력으로 활용하여 인코더-디코더 모델을 학습하는 단계, 모델을 통해 얻어낸 추상화된 문장을 활용해 검색하는 단계로 구성된다. 실험 결과, 작은 규모의 데이터에 대해 75%의 정확도를 보임으로써 실용화 가능성이 높은 것으로 나타났다. 이 방법을 통해 학생들은 자신의 어색한 문장을 교정하거나 새로운 표현을 익히고 싶은 경우 다른 사람이 작성한 좋은 예문을 쉽게 참조할 수 있어 자신의 글쓰기 능력을 향상시키는 데에 큰 도움이 될 것으로 기대된다.

사회적 이슈 리스크 유형 분류를 위한 어휘 자질 선별 (Linguistic Features Discrimination for Social Issue Risk Classification)

  • 오효정;윤보현;김찬영
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권11호
    • /
    • pp.541-548
    • /
    • 2016
  • 사용자의 다양한 의견을 수렴하고 모니터링하기 위한 정보원으로써 소셜미디어의 활용은 이미 필수가 되었다. 본 논문은 소셜미디어에 나타난 다양한 이슈 중 여론 형성에 악영향을 끼치는 부정적 사건을 이슈 '리스크'로 정의, 그 세부 유형을 자동으로 분류하는 모델을 개발하고자 한다. 이를 위해 소셜미디어에 나타난 다양한 어휘 자질을 선별, 그 효과를 규명하였다. 특히 리스크 문장의 어휘 구문 특징을 표현하기 위한 자질로 워드 임베딩 학습 결과를 활용한다. 개별 어휘 자질의 특징을 분석하기 위해 언어분석 오류를 보정한 환경에서 수행한 실험 결과, 가장 효과가 큰 자질은 개체명 자질로 분석되었으며, 기본 어휘 자질을 기반으로 주요 술부의 워드 임베딩 결과와 워드 클러스터 결과를 모두 조합한 경우가 최고 성능을 보이는 것으로 파악되었다. 실제 소셜빅데이터에 적용하는 환경과 유사하도록 자동 언어분석 결과의 오류를 포함한 조건에서 실험한 결과, 고빈도 평가셋에서는 92.08%의 성능을, 전체 58개 범주 평가셋에서는 85.84%의 성능을 얻었다.

자연어 처리 및 협업 필터링 기반의 전장상황 관련 문서 자동탐색 및 요약 기법연구 (A Study on Automatic Discovery and Summarization Method of Battlefield Situation Related Documents using Natural Language Processing and Collaborative Filtering)

  • 김건영;이정빈;손미애
    • 인터넷정보학회논문지
    • /
    • 제24권6호
    • /
    • pp.127-135
    • /
    • 2023
  • 정보통신기술이 발달함에 따라 전투공간에서 생산·공유되는 정보 및 체계 내 저장·관리되는 정보의 양이 폭발적으로 증가하였다. 이는 지휘관이 전장상황 인식 및 지휘결심을 수행하는 데에 활용할 수 있는 정보의 양이 증가하였음을 의미하지만, 한편으로는 지휘관의 정보 부담을 증가시킴으로써 신속한 지휘결심을 저해하는 요인이 되기도 한다. 이러한 한계를 극복하기 위해, 본 연구에서는 지휘관이 전장상황 보고 문서를 수신하였을 때, 체계 내 보유 문서 중에서 이를 해석하는 데에 도움을 줄 수 있는 문서들을 자동적으로 탐색 및 선별하고 요약하는 기법을 제안하였다. 첫째로, 개체명 인식 방법을 활용하여 수신된 전장상황 보고 문서로부터 개체들을 식별한다. 둘째로, 각 개체와 관련된 체계 내 보유 문서들을 탐색한다. 셋째로, 언어모델과 협업 필터링을 활용하여 이러한 문서들을 선별한다. 이때 언어모델은 수신된 보고 문서와 탐색된 문서 간의 유사도를 산출하기 위해 활용되고, 협업 필터링은 지휘관의 문서 열람 히스토리를 반영하기 위해 활용된다. 마지막으로, 선별된 문서들로부터 각 개체가 포함된 문장을 선별하고 이를 정렬한다. 실험은 군 문서와 비슷한 특성을 지니는 학술논문들을 활용하여 수행하였고, 제안된 방법의 타당성을 검증하였다.

완전성과 간결성을 고려한 텍스트 요약 품질의 자동 평가 기법 (Automatic Quality Evaluation with Completeness and Succinctness for Text Summarization)

  • 고은정;김남규
    • 지능정보연구
    • /
    • 제24권2호
    • /
    • pp.125-148
    • /
    • 2018
  • 다양한 스마트 기기 및 관련 서비스의 증가에 따라 텍스트 데이터가 폭발적으로 증가하고 있으며, 이로 인해 방대한 문서로부터 필요한 정보만을 추려내는 작업은 더욱 어려워졌다. 따라서 텍스트 데이터로부터 핵심 내용을 자동으로 요약하여 제공할 수 있는 텍스트 자동 요약 기술이 최근 더욱 주목을 받고 있다. 텍스트 요약 기술은 뉴스 요약 서비스, 개인정보 약관 요약 서비스 등을 통해 현업에서도 이미 활발하게 적용되고 있으며, 학계에서도 문서의 주요 요소를 선별하여 제공하는 추출(Extraction) 접근법과 문서의 요소를 발췌한 뒤 이를 조합하여 새로운 문장을 구성하는 생성(Abstraction) 접근법에 따라 많은 연구가 이루어지고 있다. 하지만 문서의 자동 요약 기술에 비해, 자동으로 요약된 문서의 품질을 평가하는 기술은 상대적으로 많은 진전을 이루지 못하였다. 요약문의 품질 평가를 다룬 기존의 대부분의 연구들은 사람이 수작업으로 요약문을 작성하여 이를 기준 문서(Reference Document)로 삼고, 자동 요약문과 기준 문서와의 유사도를 측정하는 방식으로 수행되었다. 하지만 이러한 방식은 기준 문서의 작성 과정에 막대한 시간과 비용이 소요될 뿐 아니라 요약자의 주관에 의해 평가 결과가 다르게 나타날 수 있다는 한계를 갖는다. 한편 이러한 한계를 극복하기 위한 연구도 일부 수행되었는데, 대표적으로 전문에 대해 차원 축소를 수행하고 이렇게 축소된 전문과 자동 요약문의 유사도를 측정하는 기법이 최근 고안된 바 있다. 이 방식은 원문에서 출현 빈도가 높은 어휘가 요약문에 많이 나타날수록 해당 요약문의 품질이 우수한 것으로 평가하게 된다. 하지만 요약이란 본질적으로 많은 내용을 줄여서 표현하면서도 내용의 누락을 최소화하는 것을 의미하므로, 단순히 빈도수에 기반한 "좋은 요약"이 항상 본질적 의미에서의 "좋은 요약"을 의미한다고 보는 것은 무리가 있다. 요약문 품질 평가의 이러한 기존 연구의 한계를 극복하기 위해, 본 연구에서는 요약의 본질에 기반한 자동 품질 평가 방안을 제안한다. 구체적으로 요약문의 문장 중 서로 중복되는 내용이 얼마나 적은지를 나타내는 요소로 간결성(Succinctness) 개념을 정의하고, 원문의 내용 중 요약문에 포함되지 않은 내용이 얼마나 적은지를 나타내는 요소로 완전성(Completeness)을 정의한다. 본 연구에서는 간결성과 완전성의 개념을 적용한 요약문 품질 자동 평가 방법론을 제안하고, 이를 TripAdvisor 사이트 호텔 리뷰의 요약 및 평가에 적용한 실험 결과를 소개한다.