• Title/Summary/Keyword: 자동측정시스템

Search Result 1,047, Processing Time 0.035 seconds

A Study on the Musical Theme Clustering for Searching Note Sequences (음렬 탐색을 위한 주제소절 자동분류에 관한 연구)

  • 심지영;김태수
    • Journal of the Korean Society for information Management
    • /
    • v.19 no.3
    • /
    • pp.5-30
    • /
    • 2002
  • In this paper, classification feature is selected with focus of musical content, note sequences pattern, and measures similarity between note sequences followed by constructing clusters by similar note sequences, which is easier for users to search by showing the similar note sequences with the search result in the CBMR system. Experimental document was $\ulcorner$A Dictionary of Musical Themes$\lrcorner$, the index of theme bar focused on classical music and obtained kern-type file. Humdrum Toolkit version 1.0 was used as note sequences treat tool. The hierarchical clustering method is by stages focused on four-type similarity matrices by whether the note sequences segmentation or not and where the starting point is. For the measurement of the result, WACS standard is used in the case of being manual classification and in the case of the note sequences starling from any point in the note sequences, there is used common feature pattern distribution in the cluster obtained from the clustering result. According to the result, clustering with segmented feature unconnected with the starting point Is higher with distinct difference compared with clustering with non-segmented feature.

A Study on the Detection of Interfacial Defect to Boundary Surface in Semiconductor Package by Ultrasonic Signal Processing (초음파 신호처리에 의한 반도체 패키지의 접합경계면 결함 검출에 관한 연구)

  • Kim, Jae-Yeol;Hong, Won;Han, Jae-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.5
    • /
    • pp.369-377
    • /
    • 1999
  • Recently, it is gradually raised necessity that thickness of thin film is measured accuracy and managed in industrial circles and medical world. Ultrasonic signal processing method is likely to become a very powerful method for NDE method of detection of microdefects and thickness measurement of thin film below the limit of ultrasonic distance resolution in the opaque materials, provides useful information that cannot be obtained by a conventional measuring system. In the present research. considering a thin film below the limit of ultrasonic distance resolution sandwiched between three substances as acoustical analysis model, demonstrated the usefulness of ultrasonic signal processing technique using information of ultrasonic frequency for NDE of measurements of thin film thickness. Accordingly, for the detection of delamination between the junction condition of boundary microdefect of thin film sandwiched between three substances the results from digital image processing.

  • PDF

Automatic Detection and Analysis of Rip Currents at Haeundae Beach using X-band Marine Radar (항해용 X-band 레이다를 이용한 해운대해수욕장 이안류 자동탐지 및 특성 분석)

  • Oh, Chanyeong;Ahn, Kyungmo;Cheon, Se-Hyeon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.485-492
    • /
    • 2019
  • The observation system has been developed to investigate the rip currents at Haeundae beach using X-band marine radar. X-band radar system can observe shape, size, and velocity of rip currents, which is difficult to obtain through field observation by conventional device. Algorithms which automatically detect locations, shapes, and magnitudes of rip currents were developed using time averaged X-band radar sea clutter images. X-band sea clutter images are transformed through 3D FFT into 2D wave number spectrum and frequency spectrum. Rip current velocities were estimated using differences in wave-number spectra and wave frequency spectra due to Doppler shift. The algorithm was verified by drift experiments. At Haeundae beach, the radar system exactly located the rip currents and found to be sustained for 1-2 days at fixed locations.

An Automatic Collision Avoidance System for Drone using a LiDAR sensor (LiDAR 센서를 이용한 드론 자동 충돌방지 시스템)

  • Chong, Ui-Pil;An, Woo-Jin;Kim, Yearn-Min;Lee, Jung-Chul
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.2
    • /
    • pp.54-60
    • /
    • 2018
  • In this paper, we propose an efficient automatic control method for the collision avoidance of drones. In general, the drones are controlled by transmitting to the flight control (FC) module the received PWM signals transmitted from a RC controller which transduce movements of the knob into PWM signal. We implemented the collision avoidance module in-between receiver and FC module to monitor and change the throttle, pitch and roll control signals to avoid drone collision. In order to avoid the collision, a LiDAR distance sensor and a servo-motor are installed and periodically measure the obstacle distance within -45 degrees from 45 degrees in flight direction. If the collision is predicted, the received PWM signal is changed and transmitted to the FC module to prevent the collision. We applied our proposed method to a hexacopter and the experimental results show that the safety is improved because it can prevent the collision caused by the inadvertency or inexperienced maneuver.

Genetic Algorithm Calibration Method and PnP Platform for Multimodal Sensor Systems (멀티모달 센서 시스템용 유전자 알고리즘 보정기 및 PnP 플랫폼)

  • Lee, Jea Hack;Kim, Byung-Soo;Park, Hyun-Moon;Kim, Dong-Sun;Kwon, Jin-San
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.69-80
    • /
    • 2019
  • This paper proposes a multimodal sensor platform which supports plug and play (PnP) technology. PnP technology automatically recognizes a connected sensor module and an application program easily controls a sensor. To verify a multimodal platform for PnP technology, we build up a firmware and have the experiment on a sensor system. When a sensor module is connected to the platform, a firmware recognizes the sensor module and reads sensor data. As a result, it provides PnP technology to simply plug sensors without any software configuration. Measured sensor raw data suffer from various distortions such as gain, offset, and non-linearity errors. Therefore, we introduce a polynomial calculation to compensate for sensor distortions. To find the optimal coefficients for sensor calibration, we apply a genetic algorithm which reduces the calibration time. It achieves reasonable performance using only a few data points with reducing 97% error in the worst case. The platform supports various protocols for multimodal sensors, i.e., UART, I2C, I2S, SPI, and GPIO.

Image-Based Automatic Detection of Construction Helmets Using R-FCN and Transfer Learning (R-FCN과 Transfer Learning 기법을 이용한 영상기반 건설 안전모 자동 탐지)

  • Park, Sangyoon;Yoon, Sanghyun;Heo, Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.3
    • /
    • pp.399-407
    • /
    • 2019
  • In Korea, the construction industry has been known to have the highest risk of safety accidents compared to other industries. Therefore, in order to improve safety in the construction industry, several researches have been carried out from the past. This study aims at improving safety of labors in construction site by constructing an effective automatic safety helmet detection system using object detection algorithm based on image data of construction field. Deep learning was conducted using Region-based Fully Convolutional Network (R-FCN) which is one of the object detection algorithms based on Convolutional Neural Network (CNN) with Transfer Learning technique. Learning was conducted with 1089 images including human and safety helmet collected from ImageNet and the mean Average Precision (mAP) of the human and the safety helmet was measured as 0.86 and 0.83, respectively.

Improved Method to Select Targets in Phase Gradient Autofocus on Real Time Processing (실시간 처리를 위한 PGA 표적 선택기법 개선)

  • Lee, Hankil;Kim, Donghwan;Son, Inhye
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.10
    • /
    • pp.57-63
    • /
    • 2019
  • Motion errors which are caused by several reasons, non-ideal path, errors of navigation systems, and radar system errors, have to be corrected. Motion compensation methods can compensate the motion error, but not exactly. To correct these residual errors, several autofocus methods are invented. A popular method is phase gradient autofocus (PGA). PGA does not assume specific circumstances, such as isolated point targets and shapes of errors. PGA is an iterative and adaptive method, so that the processing time is the main problem for the real time processing. In this paper, the improved method to select targets for PGA is proposed to reduce processing time. The variances of image pixels are used to select targets with high SNR. The processing of PGA with these targets diminishes the processing time and iterations effectively. The processed results with real radar data, obtained by flight tests, show that the proposed method compensates errors well, and reduce working time.

Soil Moisture Prediction Based on Hyperspectral Image using CNN(Convolution Neural Network) (합성곱신경망을 이용한 초분광영상기반 토양수분예측)

  • Jeon, Nam-Youl;Lee, Bong-Kyu
    • Journal of Software Assessment and Valuation
    • /
    • v.17 no.2
    • /
    • pp.75-81
    • /
    • 2021
  • Since plant growth is greatly influenced by moisture, it is important to control the soil to have optimal moisture for the plant being grown. Recently, researches on automatically analyzing plant growth information including soil moisture using spectral images are being conducted. However, hyperspectral images are difficult to use due to huge amount of data appearing in spectral bands. In this paper, we propose a method to solve the complexity of hyperspectral images using a CNN. Since the proposed method automatically analyzes the entire band of the target hyperspectral using deep learning, there is no need to make an effort to find a specific band for analysis of each image. In order to show the effectiveness of the proposed system, we conduct an experiment to analyze moistures using hyperspectral images obtained from soil.

Development of Intelligent AMI Sensing Technique Using ICT (기존 전력량계를 ICT 기반 지능형 AMI 센싱 장치로 변환 연구)

  • Sang-Ok Yoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.23-28
    • /
    • 2023
  • The installation rate of AMI(: Advanced Metering Infrastructure) capable of automatic electricity measurement is less than 43% nationwide and 10.5% in rural areas, which is very poor. Therefore, for the smart grid, automatic information recording of the watt-hour meter is required. For this purpose, it is necessary to develop a system capable of remote meter reading and use control by improving the existing watt-hour meter. In this paper, in order to enable the AMI function of the existing electricity meter, the remote meter reading and control technology of the existing electricity meter for AMI, the core of the smart grid, was developed using IoT and AI. The main research content was to recognize numbers using Tensorflow and Open-cv to convert it into a power meter sensing device for SG. We confirmed and checked the performance using the protyope system.

Classification of hysteretic loop feature for runoff generation through a unsupervised machine learning algorithm (비지도 기계학습을 통한 유출 발생 내 이력 현상 구분)

  • Lee, Eunhyung;Jeon, Hangtak;Kim, Dahong;Friday, Bassey Bassey;Kim, Sanghyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.360-360
    • /
    • 2022
  • 토양수분과 유출 간 관계를 정량화하는 것은 수문 기작 및 유출 발생 과정의 이해를 위한 중요한 정보를 제공한다. 특히, 유출과정의 특성화는 수문 사상에 따른 불포화대 내 토양수 및 토사 손실 제어와 산사태 및 비점오염원 발생 예측을 위해 필수적이다. 유출과정과 관련된 비선형성과 복잡성을 확인하기 위해 토양수분과 유출 사이의 이력 거동이 조사되었다. 특히, 수문 과정 내 이력 현상 구체화를 위해 정성적인 시각적 분류 및 정량적 평가를 위한 이력 지수들이 개발되었다. 정성적인 시각적 분류는 시간에 따라 시계 및 반시계방향으로 다중 루프 형상을 나누는 방식으로 진행되었고, 정량적 평가의 경우 이력 고리(Hysteretic loop) 내 상승 고리(Rising limb)와 하강 고리(Falling limb)의 차이를 기준으로 한 지수로 이력 현상을 특성화하였다. 이전에 제안된 방법론들은 연구자의 판단이 들어가기 때문에 보편적이지 않고 이력 현상을 개발된 지수에 맞춤에 따라 자료 손실이 나타나는 한계가 존재한다. 자료의 손실 없이 불포화대 내 발생 가능한 대표 이력 현상을 자동으로 추출하기 위해 적합한 비지도 학습기반 기계학습 방법론의 제안이 필요하다. 우리 연구에서는 국내 산지 사면에서 강우 사상 동안 다중 깊이(10, 30, 60cm)로 56개의 토양수분 측정지점에서 확보된 토양수분 시계열 자료와 산지 사면 내 위어를 통해 확보된 유출 시계열 자료를 사용하였다. 먼저, 기존에 분류 방법을 기반으로 계절 및 공간특성에 따라 지배적으로 발생하는 토양수분-유출 간 이력 현상을 특성화하였다. 다음으로, 토양수분-유출 간 이력 패턴을 자료 손실 없이 형상화하여 자동으로 데이터베이스화하는 알고리즘을 개발하였다. 마지막으로, 비지도 학습방법을 이용하여 데이터베이스화된 실제 발현 이력 현상 내 확률분포를 최대한 가깝게 추정하는 은닉층을 반복적인 재구성 학습을 통해 구현함으로써 대표 이력 현상 패턴을 추출하였다.

  • PDF