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Genetic Algorithm Calibration Method and PnP Platform for Multimodal Sensor
Systems
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ABSTRACT

This paper proposes a multimodal sensor platform which supports plug and play (PnP) technology. PnP technology
automatically recognizes a connected sensor module and an application program easily controls a sensor. To verify a
multimodal platform for PnP technology, we build up a firmware and have the experiment on a sensor system. When a
sensor module is connected to the platform, a firmware recognizes the sensor module and reads sensor data. As a
result, it provides PnP technology to simply plug sensors without any software configuration. Measured sensor raw
data suffer from various distortions such as gain, offset, and non-linearity errors. Therefore, we introduce a polynomial
calculation to compensate for sensor distortions. To find the optimal coefficients for sensor calibration, we apply a
genetic algorithm which reduces the calibration time. It achieves reasonable performance using only a few data points
with reducing 97% error in the worst case. The platform supports various protocols for multimodal sensors, ie., UART,
12C, 12S, SPI, and GPIO.
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| . Introduction

In the development of artificial intelligence (AI),
sensor applications are utilized for a wide range of
activities including medical diagnosis, electronic
trading, robot control, and remote sensing. As the
increase in demand and diversity of sensor
need[8-9)]

sensors 1S

applications[1-7], the accuracy and

reliability — of increasing. However,
sensors are not good enough for high reliability
application for a variety of reasons. First, sensors
subject to heat, cold, shock, and humidity during
storage, shipment and/or assembly may show a
change in response[10]. In addition, some sensor
technologies 'age’ and their response will naturally
change over time. Moreover, there are many factors
such as gain, offset, nonlinearity errors[11], and etc.
In order to achieve a high accuracy, a sensor
should be calibrated. Researchers have recently
conducted a survey into artificial neural networks
such as convolutional neural network, spike neural
network, and etc. However, achieving accurate data
is more important to improve performance for high
reliability applications.

The multimodal sensor platform supports plug
(PnP)
recognizes a connected sensor module and an

and play technology which automatically

application program easily controls the sensor. The
TTAK.KO-60.0290 standard[12] is
separate into H/W platform developer and sensor

possible  to
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device driver provider, when you develop a sensor
node so it makes each part focus on their part and
also develop more efficiently and also it can realize
low-costs in industry. The multimodal
platform supports the PnP standard[12].

In this paper,

sensor

we develop a platform which
compensates multimodal sensors concurrently and
supports PnP technology to simply plug sensors
without any software configuration. In addition, we
support various protocols for multimodal sensors,
e, UART, I2C, I2S, SPI, and GPIO.

Il. Genetic Algorithm Calibration

There are a lot of good sensors these days,
however, they still suffer from errors. In order to
achieve an improved accuracy, a sensor should be
calibrated in the system where it will be used. A
polynomial calculation compensates the difference
between ideal output and measured data of a
sensor. To find coefficients for the polynomial, we
introduced a generic algorithm.

The goal of genetic algorithms was to solve
optimization problems in the way of bio-inspired
operators such as mutation, crossover and selection.
In a genetic algorithm, the population is evolved
toward better solutions. Fig. 1 shows the block
diagram of a genetic algorithm processor.
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Fig. 1 Block diagram of genetic algorithm processor

2.1 Random Number Generator

A genetic algorithm employs a random number
generator to operate crossover, mutation, and
generation of populations. In order to implement
hardware architecture, we employ a linear—feedback
shift register (LFSR) which produces sequences
that depend on the number of states, the feedback
register connections, and initial conditions[13]. For a
an LFSR can

produce a sequence of bits that appears random

well-chosen feedback function,

and has a very long cycle. Two polynomials of the
LFSRs are as follows

P,

16 () =2 + 2" +22 +a+1,

Plz(x) =" +2" Fr+1.

Fig. 2 and Fig. 3 are the logical circuits for
LFSR-12 and LFSR-16. The LFSR-12 is made up
of a 12-stage register for storage and shifting,
XOR gates, and a feedback path from the last XOR
to the input of the register.
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|‘<’ Xo | X1 | X2 | X3 | Xa | X5 [ X6 | X7 | Xg | Xo | X10 | X11
Fig. 2 LFSR-12
%3 X4 | Xs | Xe | X7 | X8 | Xo | X10 [ X11 | X12 | X13 | X14 | X15
\§
Fig. 3 LFSR-16
2.2 Population Generator 2.3 Crossover
The algorithm begins by a creating initial A crossover operation combines the genetic

population. There are two methods to initialize
population. A random initialization generates an
initial population with completely random solutions.
Another method is a heuristic initialization that
populates an initial population using a known
heuristic for the problem. In this paper, a genetic
algorithm adopts a random initialization using a
LFSR-16 and stores in a population memory. The
variable and

of populations is

is 32-hit fixed—point number.

number one
The

arithmetic operations in the genetic algorithm are

chromosome

fixed—point calculations.

72

information of two parents to generate new
children. The two parents are randomly selected by
involving a random number generator. We adapt
three types of crossover (uniform type, 1-point
type, and 2-point type).

A 1-point crossover picks a point randomly
which designated a ‘crossover point. The tails of
two parents are swapped to get new children. For
example, there are two parents (P, P1) with 10
genes shown in Fig. 4. p, , is the mth gene of the
nth parent. Assume that a crossover point is
randomly selected after the 5th gene. This results
in two children (G, ),
genetic information from both parents as shown in

Fig. 5.

each carrying some

Py

Po.o | Po.1|Po2|Pos|Poa|Pos|Pos|Po|Pos|Poo

P13 |Pra|Pis|Pie|Pi7|P1s|P1o

Py |P1,0 P |P1,2

Fig. 4 Two parents (Po, Pi)



GEIRY AA Al2"8 {44 dugls BHA7] D PP SAE

Co Poo| Po1|Po2|Po3|Pos|PLs|Pre|PL7| P18 |P1o

C, |P1,0 P1,1|P1,2 P13 | P14a| Pos| Poe | Po7|Pog | Poo

Fig. 5 Two children (Co,C1) using 1-point
crossover with the 5th point

A 2-point crossover randomly picks two points
from the parent chromosomes. The genes in
between the points are swapped between the
parents[14]. Let us illustrate a 2-point crossover
operation on two parents (P, P;). Assume that the
two points of the 2-point crossover are selected as
3rd and 6th points. The two resulting children are

as shown in Fig. 6.

Co Poo | Po | Po2 P1,3|P1,4|P1,5 Pos | Po7 | Pog | Poo

G |P1,0|P1,1|P1,2|P0,3 Poa4 | Pos P1,5|P1,7|P1,8|P1,9|

Fig. 6 Two children (Co,C1) using 2-point crossover
with the 3rd and 6th points

In a uniform crossover, a genetic algorithm does
not divide the chromosome into segments, rather
treat each gene separately. Fig. 7 represents an
example of a uniform crossover. The 2nd, 4th, 5th,
and 8th genes are randomly selected and swapped.
We essentially flip a coin for each chromosome to
itll be in the
children. We can also hias the coin to one parent,

decide whether or not included

to have more genetic material in the child from

that parent.
Co Poo | Po | P12 | Po3 | Pra|P1s | Pos | Po| P18 | Poo
G |P1,0 P11 | Poz2 | P13 | Poa|Pos [ P16 | P | Pos [ P19

Fig. 7 Two children (Co,Ci) using uniform crossover

2.4 Mutation

Mutation alters on or more genes (positions in a
chromosome) with a probability equal to the
mutation probability[14]. Assume that the nth gene
selected for a

from a chromosome (v) was

mutation.

v= {v‘\vfl,q{vfpny Vs U qs ~~~7111,v0}

If the nth gene in this chromosome is 0 (or 1),
(or 0. So the
chromosome v after this mutation would be

it would be flipped into 1

Py P G G

Ll

Fitness Selector

A 4 A 4 A 4 A

Fitness fucntion

J(Po) | J(PY) | H(Co) | HC) l l
h 4 h 4 \ 4 A

P P

Fitness

Comparator (For the next generation)

Fig. 8 Block diagram of fitness and selection

v = {”N—vvw—u'“v Uy Up— 1> '“7“17”0}
, where z is not z.
2.5. Fitness and Selection

A fitness that
evaluates the quality of the chromosome as a

function is a computation
solution to a particular problem[15]. In this paper, a

chromosome  represents  coefficients of  the
polynomial for a calibration. The fitness function
computes a difference between the output of the
polynomial using a chromosome and its golden
reference result. The generic algorithm processor
computes the fitness results using two parents and
two children. The fitness comparator selects two
chromosomes having lower output of the fitness

function than the others, and these chromosomes
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are new parents for the next generation. Fig. 8
shows an example of a fitness and a selection
where J(v) is the fitness function of chromosome v
and P’ is a parent for the next generation.

Digital Sensor

Sensor Identification
Information Block

Sensor
Identification

Sensor Device
Driver

SCK
SDA

A

Controller

v

Power Management

Fig. 9 Sensor module for PnP platform

[ll. Plug and Play Technology

The multimodal sensor platform supports PnP
technology[12] which automatically recognizes a

connected sensor module and an application
program easily controls a sensor. A sensor module
contains a digital sensor, a sensor identification, a
sensor device driver, a PnP controller, and a power

management shown in Fig. 9.

Power type Sensor interface type Sensor number
(4 bits) (4 bits) (26 bits)
0x01: 1.8V 0x01: 12C
0x02: 3.3V 0x02: 125
0x03: 5.0V 0x03: SPI
0x04: UART
0x05: GPIO

Fig. 10 Sensor

Fig. 10 shows a sensor identification (32 bits)
which consists of a power type (4 bits), an
interface type (4 bits), and a sensor number (26
bits).

To recognize a PnP module, a multimodal sensor
platform requires a sensor identification from the
module. Fig. 11 illustrates the recognition process.
When a connected to a

sensor module is
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identification

multimodal sensor platform, the platform receives
an interrupt signal. The platform reads a sensor
information using a I2C interface shown in Fig. 12,
and initializes a related bus interface.
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Fig. 11 Recognition process
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IV. Multimodal Sensor Platform

We develop a multimodal sensor platform using
a genetic algorithm and PnP technology. Fig. 13
shows a block diagram for the multimodal sensor
platform. The sensor subsystem supports various
interfaces, ie., UART, 12C, U2S, SPI, and GPIO. A
measured raw data arrives in the genetic algorithm
processor and it is compensated to the accurate
data. This platform supports a PnP system which
automatically tells system software (such as
drivers) where to find attached sensors, and how to
operate with the sensors[10].

The interface controller sets for the bus interface
and the genetic algorithm processor. To reduce
processor load, we use a controller for each
interface. The controller initializes a connected
sensor and reads data without a processor. The
sensor data is calibrated by the genetic algorithm
processor. For PnP technology, each sensor module
contains a sensor information block which involves

its sensor identification, power type, and interface
type.

Sensor ID

master not
nacknowledged

Fig. 12 Timing diagram for 12C interface
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Sensor Subsystem

‘ Interface Controller ‘

I

Bus Interface
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Sensor Module 0
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Fig. 13 Block diagram for multimodal sensor
platform
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Fig. 14 Sensor board for the multimodal sensor
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V. Experimental Results

To verify the multimodal sensor platform, we
designed the sensor board including temperature
(LM75A), MEMS MIC  (SPH0645),  digital
accelerometer (ADXL345), and ambient light sensor
(TEMT6000) sensors as shown in Fig. 14. These
sensors are accessible through SPI I2C, I2S, and
GPIO interfaces.

Fig. 15 shows the compensated results for an
ambient light sensor (TEMT6000) sensor, where
x-axis is illuminance of the immediate vicinity
perceived by the sensor and y-axis is measured
voltage from the sensor. To measure the reference
illumination intensity, we used a light lux meter
(DT-1300). As shown in Fig. 15 (a), there is the
difference between the measured and reference data
due to offset and nonlinearity errors. The genetic
algorithm processor finds the optimal coefficients
measured data. The
compensated results are almost same as the

and compensates the

reference data as shown in Fig. 15 (b).

We verified a sensor module for PnP technology.
Fig. 16 shows a firmware for the multimodal
sensor platform. The yellow (or red) box indicates
that the related
disconnected). When a sensor module is connected

sensor is connected (or

on the multimodal sensor platform, a firmware

2.98

—6— Measured
——>< Reference

2.975 1 Calil tware)
—¥— Calibrated(Hardware)

. =

518 518.5 519 519.5 520 520.5 521 521.5 522
llluminance (Ix)

(b)

Fig. 15 Compensated Results for Ambient Light Sensor (TEMT6000)
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Fig. 16 Firmware for multimodal sensor platform

turns on a button (green light) on the right upper
side in Fig. 16, and reads a sensor identification.
Otherwise, the switch changed a red light. In Fig.
16, a temperature sensor and a gyro sensor are
connected to the multimodal sensor platform. These
sensors are automatically recognized and read data.

We simulated the third-degree polynomial to
compensate measured data. It can reduce the
measured error to 96.84% and complete computation
within 25.43ms shown in Table 1.

Table 1. Simulation Results using Genetic Algorithm

Test |Degree| CPs | Errors |Calibration time

case |(order)| (ea.) (%) (ms)
Worst 3 4 3.16 2543
Typical 2 3 0.001 10.98

VI. Conclusion

In this paper, we developed a multimodal sensor
planform that supports various bus interfaces and
the genetic algorithm processor to compensate
sensor data. In addition, it provides PnP technology
to simply plug sensors without any software
configuration.

The genetic algorithm processor

calibrates  various concurrently and it

achieves reasonable performance using only a few

Sensors

data points with reducing 97% error in the worst
case.
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