• Title/Summary/Keyword: 자동차 자동제어

Search Result 257, Processing Time 0.027 seconds

An Dynamic Analysis on the Technology Innovation of Auto Production Industry (자동차산업 기술혁신의 동학적 분석)

  • Song, Tae-Bock;Namn, Su-Hyeon
    • Journal of Korea Technology Innovation Society
    • /
    • v.14 no.1
    • /
    • pp.85-108
    • /
    • 2011
  • Under Ford system, corporations sought to maximize the economies of scale by raising the production efficiency. It aims to lower the production cost by increasing the quantity of output. But in the era of market flux and uncertainty, however, such strategies can no longer be sustained. Replacing the structures of Ford system, Toyota was able to accelerate the pace of process innovation and product innovation. Related to this innovation is JIT, new model development, modularization. The firm's reliance on flexible production technology provides opportunities to expand her production basis to foreign countries successfully. The main objective of this paper is to explore the contribution of process innovation to profit-capital ratio. The model is estimated using a time-series data of 18 years from 1990 to 2007 of auto production industry in korea. An Implication of this estimation shows that process innovation explains a significant portion of profit-capital ratio.

  • PDF

Research of shape optimization for High-Efficiency Electronic cold modules taking into consideration thickness and thermoelectric element mounting position (두께와 열전소자 부착위치를 고려한 자동차용 고효율 전자 냉온 모듈 형상 최적화 연구)

  • Kim, Jae-Won;Lee, Jung-Ho;Park, Chan-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8350-8356
    • /
    • 2015
  • The demand for user convenient devices in automotive applications are fast growing, mainly driven by the customer's requirement for higher efficiency and more features. In important such feature is the cold module for cars, which are convenient luxuries that warm or cool drinks placed in the cup holder by means of a thermoelectric element. In present study, we would like to find out the optimal thickness of the cup holder and mounting position of the thermoelectric element through experiments under various testing conditions and thermal analysis. The resulting thermal distribution of the primary area of thermal analysis was found to be lowest when the thickness was 2.5 mm. The temperature distribution was also lowest when the thermal element was positioned underneath the holder (A-type).

Development of Electronic Control Module for Automobile Clutch (자동차용 클러치 전자 제어 모듈 개발에 관한 연구)

  • Na, Won-Shik;Kim, Sang-Hyoun;Moon, Song-Chul;Lee, Jae-Ha
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.3
    • /
    • pp.208-214
    • /
    • 2008
  • With the development of the automobile industry, technologies for parts of an automobile with more convenient functions have progressed, but the manual clutch developed at the first phase of inventing means of transport still remains at the early stage of the automatic transmission despite numerous research and efforts. The traditional automatic transmission is mainly used in small cars and personal RV vehicles that include the slipped clutch disk. However, this research seeks an innovative technology that can be applied to all types of transportation operating the clutch, such as small cars, large vehicles, farm machines and vessels. In order to accurately decide the joint timing of the clutch disk according to the output of engine power that differs depending on driving conditions of vehicles, and to apply the half clutch state which frequently occurs in the manual transmission, the rpm of the engine can be used as the base to decide the joint timing of the clutch disk. This research has developed an electronic clutch module that can transmit the engine power by moving and jointing the clutch disk as much as the engine rpm increases.

  • PDF

Hydro-forming Process Control and Design Concept of Automotive Rear Sub-frame Components Through Cross Sectional Analysis (단면 분석을 통한 자동차용 리어 서브-프레임 하이드로포밍 부품의 공정 제어 및 설계)

  • Kim, Kee Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.1-6
    • /
    • 2018
  • Hydro-forming technology has spread dramatically throughout automotive industry over the last 20 years. This technology has many advantages for automotive applications in terms of better structural integrity of the parts, lower cost from fewer parts, material savings, weight reduction, lower springback, improved strength, durability, and design flexibility. In this study, various simulation technologies were developed to investigate the formability of hydro-forming components. Through this technology, to establish the effective forming process for appropriate components design, the bending process, pre-forming process, die closing process, etc. were considered for good forming. This paper proposes the forming amount, section length (corresponding to the hydro-forming press capacity), and minimum curvature (curvature effect evaluation according to the hydro-forming pressure) among the considerations in the design of the hydro-forming part. In addition, a design method is proposed for hydro-forming molding by carrying out cross section analysis of a real sub-frame part for automobiles. The effects of pre-bending, axial feed, hydraulic pressure, press load, and friction among the hydro-forming process parameters were analyzed. Therefore, whether these processes are necessary factors for hydro-forming were examined.

Fabrication and Characteristics of Hot-film Air Flow Sensor for Automobile (자동차용 박막 히터형 공기유량센서의 제작 및 특성)

  • Kim, Hyung-Pyo;Park, Se-Kwang
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.5
    • /
    • pp.394-399
    • /
    • 1999
  • An automobile hot-film air flow sensor is deposited with platinum by sputtering method, patterned by photoresisted lift-off method, annealed in $1,000^{\circ}C$ and passivated with PI-2723. The TCR of the fabricated hot-film is about $3500\;ppm/^{\circ}C$. In the experiment, the output voltage of the sensor is in proportional to the fourth power root in the air mass flow range of 300 kg/h. The error in the full flow range is about ${\pm}0.7%$. In the range of air temperature of $-20^{\circ}C{\sim}120^{\circ}C$, the error is about ${\pm}1%$ that is ${\pm}2%$ lower than that of the reference sensor. Therefore, the fabricated hot-film air flow sensor satisfies the specification for automobile. Lower temperature error of the sensor provides to control the precise air/fuel ratio of automobile engine and results in improvement of a fuel mileage and the less amount of toxic gases emitted by automobile.

  • PDF

The Study on the Control Performance of a Screw Type Super-charger for Automotive Use (자동차용 스크류형 과급기의 제어성능에 관한 연구)

  • 배재일;배신철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.21-29
    • /
    • 2003
  • Boosting of engine power by using Turbo- or Super-charger is a solution to comply with $CO_2$-regulation in Europe. Turbo-charger is now playing a major role in the field of charging system thank to its technical advantages such as no demand of operation power from engine. A mechanically driven Super-charger, however, is now popular due to quick speed response to change of the driving mode-high engine torque even at low engine speed. Since Super-charger needs operation power from engine, it is difficult to improve its relatively higher fuel consumption than that of Turbo-charger. This negative point is still an obstacle to the wide use of Super-charger. This study aims to develop power control concept to achieve the minimization of operation power when it is not necessary to charge at idling or part load driving condition. A screw type Super-charger was modified in design partially and adapted an internal bypass valve and a bypass tube to control charging pressure at part load. The various control concepts show a possibility to reduce operation power of Super-charger and result in improvement of fuel consumption.

A Study on the Development of the Automatic Performance-Test-Bench for Drag Torque (드래그 토오크의 자동 성능시험기 개발에 관한 연구)

  • Lee, Seong-Ho;Mok, Hak-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.166-174
    • /
    • 2008
  • Recently, the automotive industry has been developing rapidly. With the progress parts of the automobile components need high quality and the reliability. Among them, braking unit is essential device, and acquire the reliability through the performance test of brake. This study was aimed to design the performance-test-bench to measure the drag torque which has effect on caliper in braking unit. In this progressive technology, it is vital importance to use hydraulic and pneumatic, and to combine test bench with instrumentation engineering technology. This system to construct the design of hydraulic and pneumatic circuit, interface technique between sensors and personal computer, data acquisition and display design, and integrated control are very important technology. Moreover, reliable data are obtained through vacuum system and hydraulic and pneumatic system by using of booster and brake master cylinder which are actually applied to automobile. Then, data signal detector sensors for speed, pressure and torque is attached on this system. Therefore, in this study, we designed a performance-test-bench by and we also made an total control system using personal computer which is more progressive and flexible method than existing PLC control.

Analysis of Diagnosis and Failsafe Algorithm Using Transmission Simulator (변속기 시뮬레이터를 이용한 진단 및 안전작동 알고리즘 분석)

  • Jung, Gyuhong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.89-97
    • /
    • 2014
  • As the digital control technologies in automotive industry have advanced, electronic control units(ECUs) play a key-role to improve system performance. Transmission control unit(TCU) is a shifting controller for automatic transmission of which major functions are to determine the shift and manage the shifting process considering the various sensor signal on transmission and driver's commands. As with any ECU in vehicle, TCU performs complex algorithms such as shift control, diagnostic and failsafe functions. However, firmware design analysis is hardly possible by the reverse engineering due to code protection. Transmission simulator is a hardware-in-the-loop simulator which enables TCU to work in normal mode by simulating the electrical signal of TCU interface. In this research, diagnosis and failsafe algorithm implemented on commercialized TCU is analyzed by using the transmission simulator that is developed for wheel loader construction vehicle. This paper gives various experimental results on the proportional solenoid current trajectories for different operating modes, error detection criterion and limphome mode gears for all the possible cases of clutch malfunction. The derived results for conventional TCU can be applied to the development of inherent TCU algorithms and the transmission simulator can also be utilized for the test of TCU to be developed.

A Study on the Automotive Suspension System for Energy Efficiency (에너지 절감형 자동차용 현가장치에 관한 연구)

  • 소상균
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.100-107
    • /
    • 2001
  • The main goals of the automotive suspension systems are to isolate roadway unevenness from the tire and to improve vehicle stability. To overcome the performance limitation of the passive systems the active systems which completely replace the passive spring and damper elements with a force generating actuator has been studied. However, application of the system has been limited because it has required a significant amount of power. Recently, alternative systems which retain passive elements but include active elements have been developed to reduce the power required. Those systems are mostly focused on the control system which compresses the spring-damper directly. In this study, a new type of power efficient control system which makes the spring-damper unit slide in side way is studied. After constructing the control system including dynamic modeling and motion control, two types of alternative control systems are compared in view of power consumption and dynamic attitudes such as roll responses as well as heave responses. Also, a half car bond graph model is developed to show clearly the significant differences in performances between two control systems.

  • PDF

Development of Vehicle Longitudinal Controller Fault Detection Algorithm based on Driving Data for Autonomous Vehicle (자율주행 자동차를 위한 주행 데이터 기반 종방향 제어기 고장 감지 알고리즘 개발)

  • Yoon, Youngmin;Jeong, Yonghwan;Lee, Jongmin;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.2
    • /
    • pp.11-16
    • /
    • 2019
  • This paper suggests an algorithm for detecting fault of longitudinal controller in autonomous vehicles. Guaranteeing safety in fault situation is essential because electronic devices in vehicle are dependent each other. Several methods like alarm to driver, ceding control to driver, and emergency stop are considered to cope with fault. This research investigates the fault monitoring process in fail-safe system, for controller which is responsible for accelerating and decelerating control in vehicle. Residual is computed using desired acceleration control command and actual acceleration, and detection of its abnormal increase leads to the decision that system has fault. Before computing residual for controller, health monitoring process of acceleration signal is performed using hardware and analytic redundancy. In fault monitoring process for controller, a process model which is fitted using driving data is considered to improve the performance. This algorithm is simulated via MATLAB tool to verify performance.