• Title/Summary/Keyword: 자동차 번호판 인식 시스템

Search Result 87, Processing Time 0.025 seconds

Learing-based approach for License Plate Recognition (학습 기반의 자동차 번호판 인식 시스템)

  • 김종배;김갑기;김항준
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.273-276
    • /
    • 2000
  • 자동차 번호판은 조명과 카메라에 따라 영상에서 다양한 형태로 나타나고 영상내의 잡음으로 인해 알고리즘 방식으로 자동차 번호판을 인식하기가 쉽지 않다. 이러한 문제에 적합한 해결 방법으로 본 논문에서는 학습 기반의 자동차 번호판 인식 시스템을 제안한다. 제안한 시스템은 자동차 검출 모듈, 번호판 추출 모듈, 번호판 문자인식 모듈로 구성된다. 본 논문에서는 자동차 번호판 추출을 위해서 시간-지연 신경망(Time-Delay Neural Networks : TDNN)과 번호판 인식을 위해서 일반적인 신경망보다 일반화 성능이 뛰어난 서포트 벡터 머신(Support Vector Machines : SVMs)을 시스템에 적용한다. 주차장과 톨케이트에서 여러 시간대의 움직이는 자동차 영상들을 실험한 결과, 자동차 검출율은 100%, 번호판 추출율은 97.5%, 번호판 문자 인식율은 97.2%의 성능을 내었고, 전체 시스템 성능은 94.7%이며 처리 시간은 약 1초 미만이다. 따라서 본 논문에서 제안한 시스템은 실세계에서 유용하게 적용될 수 있다.

  • PDF

An approach to Korean License Plate Recognition Based on Vertical, Horizontal Edge Matching (수직, 수평 성분을 이용한 한국 자동차 번호판 인식)

  • 서동훈;정해권;이원돈
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10b
    • /
    • pp.610-612
    • /
    • 2003
  • 일상 생활에서 자동차의 수가 증가함에 따라 최근 자동차 번호판을 자동으로 인식하는 시스템이 다양한 곳에서 이용되고 있다. 일례로 공항이나 아파트 단지에서 자동으로 문을 개폐해주는 시스템을 도입하고 있다. 기존에 주차권을 통한 개폐기와의 차이점 달려오던 자동차가 일정 속도만 유지하면 자동으로 번호를 인식하는 점이다. 또한 번호판을 통해 정확한 자동차에 대한 정확한 정보를 관리할 수 있다. 이러한 시스템을 위해서 자동차 번호판 영역의 정확한 추출이 필요하다. 본 논문은 자동차 번호판 영역을 RGB영역으로 인식하던 시스템에 수직, 수평 선분을 포함하여 기존에 RGB영역으로 인식하던 시스템의 단점을 보완하고 더 나은 인식시스템 구현하고 실험 하였다.

  • PDF

A Study on Labeling for License Plate Recognition (자동차 번호판 인식을 위한 레이블링 기법 연구)

  • Park, Jong-Dae;Park, Chan-Hong;Park, Byeong-Ho;Seong, Hyeon-Kyeong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.01a
    • /
    • pp.55-57
    • /
    • 2014
  • 본 논문에서는 자동차 번호판 인식을 위해 직선검출법, 모폴로지에 의한 검출법을 사용하지 않고, Blob 레이블링 기법을 이용한 번호판 인식 기법을 제안한다. 고성능 컴퓨팅 시스템의 성능 향상을 위한 효율적인 동적 작업부하 균등화 정책을 제안한다. ITS분야에서 가장 중요한 요소라 할 수 있는 자동차 번호판 인식은 자동화된 차량 관리 시스템 구성에 필수적인 요소로 요구된다. 또한, 자동차와 관련된 정보는 직, 간접적으로 높은 중요도를 가지고 있으며, 자동차와 관련된 정보가 이용되는 영역은 교통관리, 교통량분석, 자동 요금 징수 시스템, 자동차 위법 단속 등 응용범위가 나날이 넓어지고 있다. 본 논문에서는 자동차 번호판 인식을 위해 Blob 레이블링 기법을 이용하였으며, 번호판 인식을 위한 영상 샘플은 오츠알고리즘을 이용하여 이진화된 영상을 사용하였다.

  • PDF

Study on the panorama image processing using the SURF feature detector and technicians. (Emgu CV를 이용한 자동차 번호판 자동 인식 프로그램 구현에 관한 연구)

  • Kim, Nam-woo;Hur, Chang-Wu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.830-833
    • /
    • 2016
  • 자동차 번호판 인식은 대중적인 감시 기술 중의 한 종류로서, 주어진 비디오나 영상 내 광학문자 인식을 수반한다. 고속도로나 국도 상에 과속 단속 시스템, 재형 건물이나 유통센서 및 주차장 등에서 주차 정산 시스템, 고속도로 톨 게이트에서 hi-pass 에러 및 불법 도주 차량 잔속 시스템, 전국 주요 도로 불법 주 정차 단속 시스템, 공공기관, 기업 출퇴근 시간 확인 및 외부 차양 안내 시스템 등의 지능형 교통 시스템(ITS)이나 국도 상에 범위 차량 검거 시스템, 사건 발생 시 주요 도로상에 설치된 CCTV를 통해 용의 차량 이동 추적 시스템, 이동식 범죄 차량 조회, 버스에 탑재된 버스 전용차선 위반 단속들의 지능형 방범 시스템 등에 활용하고 있다. 번호판 인식은 자동차 번호판 국부화, 번호판의 크기, 차원, 명암대비, 밝기를 조정하는 정규화, 개별문자를 얻어내는 문자 분할, 문자를 인식하는 광학 문자 인식, 번호판의 형태, 크기, 위치 들이 연도별, 지역별로 차이가 있는 번호판들의 데이터베이스를 비교하여 구문 분석을 하는 절차를 거친다. 본 논문에서는 EmguCV를 이용하여 구현한 번호판 감지를 수행하여 위치를 찾아내고, 오픈 소스 광학 문자 인식 엔진으로 잘 알려져 있는 테서렉트 OCR을 이용하여 번호판의 문자를 인식하는 자동 인식 프로그램을 구현하고 기술하였다.

  • PDF

Recognition System of a Car License Plate using a Fuzzy Networks (개선된 Fuzzy ART를 이용한 자동차 번호판 인식에 관한 연구)

  • 허남숙;임은경;김광백
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2000.04a
    • /
    • pp.174-177
    • /
    • 2000
  • 자동차 번호판 인식 시스템을 구현하기 위해서는 영상에서 번호판을 추출하는 영역과 추출된 번호판에서 각 문자의 숫자를 추출하는 영역, 마지막으로 이를 인식하는 영역으로 나누어진다. 본 논문에서는 번호판 영역이 다른 영역보다 녹색의 밀집도가 높다는 특징을 이용하여 이미지에서 번호판을 추출하고, 개선된 퍼지 ART학습 알고리즘으로 자동차 번호판 인식에 적용한다. 실험결과에서는 여러 차량에 대해 인식율이 우수한 것을 보인다.

  • PDF

Binarization of Vehicle Plate Region using Adaptive Multi-threshold (Adaptive Multi-threshold를 이용한 자동차 번호판영역의 이진화)

  • 김형재;이도엽;배익성;이철희;차의영
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 1998.04a
    • /
    • pp.143-147
    • /
    • 1998
  • 카메라 영상에 의한 자동차 번호판 인식시스템은 영상 획득, 번호판 추출, 전처리, 문자 분리, 문자 인식 등 크게 5자기의 핵심 부분으로 구성된다. 따라서 자동차 번호판 인식시스템의 성능을 향상시키기 위해서는 이들 부분들 각각의 성능의 최적화가 필요하다. 본 연구는 자동차 번호판 인식시스템의 여러 단계 중 전처리에 해당하는 번호판 영역의 이진화에 관한 연구로서, 기존의 단일 임계치 방법과 다중 임계치 방법이 해결하지 못했던 부분을 보완하는 새로운 다중 임계치 방법을 제안한다. 본 논문에서 제안하는 다중 임계치 알고리즘(Adaptive Multi-threshold Algorithm)을 사용함으로써 gray-level 번호판 영상에 대해서 보다 깨끗한 이진 영상을 얻을 수 있었으며, 또한 이 알고리즘은 번호판 영역의 밝기값이 고르지 않은 영상에 대해서도 효율적인 알고리즘 임을 알 수 있었다.

  • PDF

Learning-based approach for License Plate Recognition System (학습 기반의 자동차 번호판 인식 시스템)

  • 김종배;김갑기;김광인;박민호;김항준
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.1
    • /
    • pp.1-11
    • /
    • 2001
  • This paper presents a learning-based approach for the construction of license Plate recognition system. The system consist of three modules. They are respectively, car detection module, license plate recognition module and recognition module. Car detection module detects a car in the given image sequence obtained from the camera with simple color-based approach. Segmentation module extracts the license plate in detect car image using neural network as filters for analyzing the color and texture properties of license plate. Recognition module then reads characters in detected license plate with support vector machine (SVM)-based characters recognizer. The system has been tested from parking lot and tollgate, etc. and have show the following performances on average: Car detect rate 100%, segmentation rate 97.5%, and character recognition rate about 97.2%. Overall system performances is 94.7% and processing time is one sec. Then our propose system does well using real world.

  • PDF

Recognition Performance Enhancement by License Plate Normalization (번호판 정규화에 의한 인식 성능 향상 기법)

  • Kim, Do-Hyeon;Kang, Min-Kyung;Cha, Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.7
    • /
    • pp.1278-1290
    • /
    • 2008
  • This paper proposes a preprocessing method and a neural network based character recognizer to enhance the overall performance of the license plate recognition system. First, plate outlines are extracted by virtual line matching, and then the 4 vertexes are obtained by calculating intersecting points of extracted lines. By these vertexes, plate image is reconstructed as rectangle-shaped image by bilinear transform. Finally, the license plate is recognized by the neural network based classifier which had been trained using delta-bar-delta algorithm. Various license plate images were used in the experiments, and the proposed plate normalization enhanced the recognition performance up to 16 percent.

A Study of Character Recognition using Adaptive Algorithm at the Car License Plate (적응 알고리즘을 이용한 자동차 번호판 인식 시스템 개발에 대한 연구)

  • Jang, Seung-Ju
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.10
    • /
    • pp.3155-3163
    • /
    • 2000
  • In the recognitionsystem of car license plate, it is very important to extract the character from the license plate and recognize the extrated character. In this paper, I use the adaptive algorithm to recognize the charactor of licensse plate image. The adaptive algorithm is compounded of thinning algorithm template matching,algarthm, vector algorithm and so on. The adaptive algorithm was used to recognize the character from license image. In the result of expenment, character recognition is about up to 90% with the adaptive algorithm for the character region.

  • PDF

Development of Character Recognition using Adaptive Algorithm at the Car License Plate (적응 알고리즘을 이용한 자동차 번호판 인식 시스템 개발)

  • 장승주;김성관;최만림
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.245-248
    • /
    • 2000
  • 자동차 번호판 인식 시스템에서 가장 중요한 요소는 자동차 이미지 영역에서 번호판 영역을 추출, 추출된 영역에서 문자 추출, 추출된 문자의 인식 등의 과정이다. 본 논문은 자동차 번호판 인식 과정에서 적응 알고리즘을 이용하여 보다 정확한 인식이 될 수 있도록 한다. 본 논문에서 사용하는 적응 알고리즘은 기존의 방식과는 달리 특정한 알고리즘을 이용한 인식을 하지 않고 다양한 알고리즘을 이용한 인식 결과의 조합으로 최적의 해법을 찾는다. 번호판 인식을 위한 적응 알고리즘은 원형 정합 알고리즘, 벡터 알고리즘, 세선화 알고리즘 등이다. 적응 알고리즘을 이용한 실험 결과 자동차 이미지에 대해서 90% 이상 인식이 가능함을 확인할 수 있었다.

  • PDF