Proceedings of the Korea Institute of Convergence Signal Processing
/
2000.08a
/
pp.273-276
/
2000
자동차 번호판은 조명과 카메라에 따라 영상에서 다양한 형태로 나타나고 영상내의 잡음으로 인해 알고리즘 방식으로 자동차 번호판을 인식하기가 쉽지 않다. 이러한 문제에 적합한 해결 방법으로 본 논문에서는 학습 기반의 자동차 번호판 인식 시스템을 제안한다. 제안한 시스템은 자동차 검출 모듈, 번호판 추출 모듈, 번호판 문자인식 모듈로 구성된다. 본 논문에서는 자동차 번호판 추출을 위해서 시간-지연 신경망(Time-Delay Neural Networks : TDNN)과 번호판 인식을 위해서 일반적인 신경망보다 일반화 성능이 뛰어난 서포트 벡터 머신(Support Vector Machines : SVMs)을 시스템에 적용한다. 주차장과 톨케이트에서 여러 시간대의 움직이는 자동차 영상들을 실험한 결과, 자동차 검출율은 100%, 번호판 추출율은 97.5%, 번호판 문자 인식율은 97.2%의 성능을 내었고, 전체 시스템 성능은 94.7%이며 처리 시간은 약 1초 미만이다. 따라서 본 논문에서 제안한 시스템은 실세계에서 유용하게 적용될 수 있다.
Proceedings of the Korean Information Science Society Conference
/
2003.10b
/
pp.610-612
/
2003
일상 생활에서 자동차의 수가 증가함에 따라 최근 자동차 번호판을 자동으로 인식하는 시스템이 다양한 곳에서 이용되고 있다. 일례로 공항이나 아파트 단지에서 자동으로 문을 개폐해주는 시스템을 도입하고 있다. 기존에 주차권을 통한 개폐기와의 차이점 달려오던 자동차가 일정 속도만 유지하면 자동으로 번호를 인식하는 점이다. 또한 번호판을 통해 정확한 자동차에 대한 정확한 정보를 관리할 수 있다. 이러한 시스템을 위해서 자동차 번호판 영역의 정확한 추출이 필요하다. 본 논문은 자동차 번호판 영역을 RGB영역으로 인식하던 시스템에 수직, 수평 선분을 포함하여 기존에 RGB영역으로 인식하던 시스템의 단점을 보완하고 더 나은 인식시스템 구현하고 실험 하였다.
Park, Jong-Dae;Park, Chan-Hong;Park, Byeong-Ho;Seong, Hyeon-Kyeong
Proceedings of the Korean Society of Computer Information Conference
/
2014.01a
/
pp.55-57
/
2014
본 논문에서는 자동차 번호판 인식을 위해 직선검출법, 모폴로지에 의한 검출법을 사용하지 않고, Blob 레이블링 기법을 이용한 번호판 인식 기법을 제안한다. 고성능 컴퓨팅 시스템의 성능 향상을 위한 효율적인 동적 작업부하 균등화 정책을 제안한다. ITS분야에서 가장 중요한 요소라 할 수 있는 자동차 번호판 인식은 자동화된 차량 관리 시스템 구성에 필수적인 요소로 요구된다. 또한, 자동차와 관련된 정보는 직, 간접적으로 높은 중요도를 가지고 있으며, 자동차와 관련된 정보가 이용되는 영역은 교통관리, 교통량분석, 자동 요금 징수 시스템, 자동차 위법 단속 등 응용범위가 나날이 넓어지고 있다. 본 논문에서는 자동차 번호판 인식을 위해 Blob 레이블링 기법을 이용하였으며, 번호판 인식을 위한 영상 샘플은 오츠알고리즘을 이용하여 이진화된 영상을 사용하였다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2016.05a
/
pp.830-833
/
2016
자동차 번호판 인식은 대중적인 감시 기술 중의 한 종류로서, 주어진 비디오나 영상 내 광학문자 인식을 수반한다. 고속도로나 국도 상에 과속 단속 시스템, 재형 건물이나 유통센서 및 주차장 등에서 주차 정산 시스템, 고속도로 톨 게이트에서 hi-pass 에러 및 불법 도주 차량 잔속 시스템, 전국 주요 도로 불법 주 정차 단속 시스템, 공공기관, 기업 출퇴근 시간 확인 및 외부 차양 안내 시스템 등의 지능형 교통 시스템(ITS)이나 국도 상에 범위 차량 검거 시스템, 사건 발생 시 주요 도로상에 설치된 CCTV를 통해 용의 차량 이동 추적 시스템, 이동식 범죄 차량 조회, 버스에 탑재된 버스 전용차선 위반 단속들의 지능형 방범 시스템 등에 활용하고 있다. 번호판 인식은 자동차 번호판 국부화, 번호판의 크기, 차원, 명암대비, 밝기를 조정하는 정규화, 개별문자를 얻어내는 문자 분할, 문자를 인식하는 광학 문자 인식, 번호판의 형태, 크기, 위치 들이 연도별, 지역별로 차이가 있는 번호판들의 데이터베이스를 비교하여 구문 분석을 하는 절차를 거친다. 본 논문에서는 EmguCV를 이용하여 구현한 번호판 감지를 수행하여 위치를 찾아내고, 오픈 소스 광학 문자 인식 엔진으로 잘 알려져 있는 테서렉트 OCR을 이용하여 번호판의 문자를 인식하는 자동 인식 프로그램을 구현하고 기술하였다.
Proceedings of the Korea Multimedia Society Conference
/
2000.04a
/
pp.174-177
/
2000
자동차 번호판 인식 시스템을 구현하기 위해서는 영상에서 번호판을 추출하는 영역과 추출된 번호판에서 각 문자의 숫자를 추출하는 영역, 마지막으로 이를 인식하는 영역으로 나누어진다. 본 논문에서는 번호판 영역이 다른 영역보다 녹색의 밀집도가 높다는 특징을 이용하여 이미지에서 번호판을 추출하고, 개선된 퍼지 ART학습 알고리즘으로 자동차 번호판 인식에 적용한다. 실험결과에서는 여러 차량에 대해 인식율이 우수한 것을 보인다.
Proceedings of the Korea Multimedia Society Conference
/
1998.04a
/
pp.143-147
/
1998
카메라 영상에 의한 자동차 번호판 인식시스템은 영상 획득, 번호판 추출, 전처리, 문자 분리, 문자 인식 등 크게 5자기의 핵심 부분으로 구성된다. 따라서 자동차 번호판 인식시스템의 성능을 향상시키기 위해서는 이들 부분들 각각의 성능의 최적화가 필요하다. 본 연구는 자동차 번호판 인식시스템의 여러 단계 중 전처리에 해당하는 번호판 영역의 이진화에 관한 연구로서, 기존의 단일 임계치 방법과 다중 임계치 방법이 해결하지 못했던 부분을 보완하는 새로운 다중 임계치 방법을 제안한다. 본 논문에서 제안하는 다중 임계치 알고리즘(Adaptive Multi-threshold Algorithm)을 사용함으로써 gray-level 번호판 영상에 대해서 보다 깨끗한 이진 영상을 얻을 수 있었으며, 또한 이 알고리즘은 번호판 영역의 밝기값이 고르지 않은 영상에 대해서도 효율적인 알고리즘 임을 알 수 있었다.
Journal of the Institute of Convergence Signal Processing
/
v.2
no.1
/
pp.1-11
/
2001
This paper presents a learning-based approach for the construction of license Plate recognition system. The system consist of three modules. They are respectively, car detection module, license plate recognition module and recognition module. Car detection module detects a car in the given image sequence obtained from the camera with simple color-based approach. Segmentation module extracts the license plate in detect car image using neural network as filters for analyzing the color and texture properties of license plate. Recognition module then reads characters in detected license plate with support vector machine (SVM)-based characters recognizer. The system has been tested from parking lot and tollgate, etc. and have show the following performances on average: Car detect rate 100%, segmentation rate 97.5%, and character recognition rate about 97.2%. Overall system performances is 94.7% and processing time is one sec. Then our propose system does well using real world.
Journal of the Korea Institute of Information and Communication Engineering
/
v.12
no.7
/
pp.1278-1290
/
2008
This paper proposes a preprocessing method and a neural network based character recognizer to enhance the overall performance of the license plate recognition system. First, plate outlines are extracted by virtual line matching, and then the 4 vertexes are obtained by calculating intersecting points of extracted lines. By these vertexes, plate image is reconstructed as rectangle-shaped image by bilinear transform. Finally, the license plate is recognized by the neural network based classifier which had been trained using delta-bar-delta algorithm. Various license plate images were used in the experiments, and the proposed plate normalization enhanced the recognition performance up to 16 percent.
The Transactions of the Korea Information Processing Society
/
v.7
no.10
/
pp.3155-3163
/
2000
In the recognitionsystem of car license plate, it is very important to extract the character from the license plate and recognize the extrated character. In this paper, I use the adaptive algorithm to recognize the charactor of licensse plate image. The adaptive algorithm is compounded of thinning algorithm template matching,algarthm, vector algorithm and so on. The adaptive algorithm was used to recognize the character from license image. In the result of expenment, character recognition is about up to 90% with the adaptive algorithm for the character region.
Proceedings of the Korea Institute of Convergence Signal Processing
/
2000.08a
/
pp.245-248
/
2000
자동차 번호판 인식 시스템에서 가장 중요한 요소는 자동차 이미지 영역에서 번호판 영역을 추출, 추출된 영역에서 문자 추출, 추출된 문자의 인식 등의 과정이다. 본 논문은 자동차 번호판 인식 과정에서 적응 알고리즘을 이용하여 보다 정확한 인식이 될 수 있도록 한다. 본 논문에서 사용하는 적응 알고리즘은 기존의 방식과는 달리 특정한 알고리즘을 이용한 인식을 하지 않고 다양한 알고리즘을 이용한 인식 결과의 조합으로 최적의 해법을 찾는다. 번호판 인식을 위한 적응 알고리즘은 원형 정합 알고리즘, 벡터 알고리즘, 세선화 알고리즘 등이다. 적응 알고리즘을 이용한 실험 결과 자동차 이미지에 대해서 90% 이상 인식이 가능함을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.