• 제목/요약/키워드: 자동차용 휠

검색결과 38건 처리시간 0.031초

수명과 강성을 고려한 자동차용 휠 베어링의 설계 최적화 (Design Optimization for Automotive Wheel Bearings Considering Life and Stiffness)

  • 이승표
    • Tribology and Lubricants
    • /
    • 제39권3호
    • /
    • pp.94-101
    • /
    • 2023
  • Automotive wheel bearings are a critical component of vehicles that support their weight and facilitate rotation. Life and stiffness are significant performance characteristics of wheel bearings. Designing wheel bearings involves finding optimal design variables that satisfy both performances. CO2 emission reduction and fuel efficiency regulations attribute to the recent increase in design requirements for lightweight and compact automotive parts while maintaining performance. However, achieving a design that maintains performance while reducing weight poses challenges, as performance and weight are generally inversely proportional. In this study, we perform design optimization of automotive wheel bearings considering life and stiffness. We develop a program that calculates the basic rated life and modified rated life based on international standards for evaluating the life of wheel bearings. We develop a regression equation using regression analysis to address the time-consuming stiffness analysis during repetitive analysis. We perform ANOVA and main effect analyses to understand the statistical characteristics of the developed regression equation. Furthermore, we verify its reliability by comparing the predicted and test results. We perform design optimization using the developed life prediction program, stiffness regression equation and weight regression equation. We select bearing specifications and geometry as design variables, weight as the cost function, and life and stiffness as constraints. Through design optimization, we investigate the influence of design variables on the cost function and constraints by comparing the initial and optimal design values.

자동차용 탄소섬유/에폭시 복합재료-알루미늄 하이브리드 휠 설계 및 성능평가 (Design and Performance Evaluation of Carbon Fiber/Epoxy Composite-aluminum Hybrid Wheel for Passenger Cars)

  • 홍진호;유성환;장승환
    • Composites Research
    • /
    • 제26권6호
    • /
    • pp.386-391
    • /
    • 2013
  • 본 연구에서는 차량의 승차감 향상을 위해 기존의 알루미늄 차량용 휠의 성능을 개선하고자 복합재료-알루미늄 하이브리드 휠을 제안하고 시제품을 제작하여 평가하였다. 유한요소해석 기법을 통해 알루미늄과 복합재료의 접착부에 대한 접착 길이와 접착 두께를 결정하고, 자동조심 및 접착 지그 역할을 할 수 있는 홈과 돌기 구조를 적용하였다. 차량용 복합재료-알루미늄 하이브리드 휠의 성능평가를 위해 다양한 실험을 유한요소해석을 통해 구현하고 안전성을 검토하였다. 복합재료 림 부의 성형을 위한 금형을 설계하고 진공백 성형방법으로 제작한 후 알루미늄 부와 접착을 하여 시제품을 완성하였다. 진동실험 결과, 동일한 형상의 알루미늄 휠보다 10% 가벼운 복합재료-알루미늄 하이브리드 휠의 경우 고유진동수가 16% 증가하였고, 감쇠능이 32% 증가하였다.

수분함량에 따른 자동차용 휠베어링 그리스 품질특성 연구 (Performance of Automotive Wheel Bearing Grease by Water Contents)

  • 임영관;이은희;이정민;정충섭
    • Tribology and Lubricants
    • /
    • 제27권5호
    • /
    • pp.275-280
    • /
    • 2011
  • Automotive wheel bearing grease helps to reduce stresses and prevent wear of wheel bearings. But it is easily contaminated by water and other contaminants. In this study, we investigated the property change of automotive wheel bearing grease under water contamination. The result showed that some properties such as dropping point, work penetration and oxidation stability were not influenced by water content. However, most of properties such as work stability, water washout characteristics, leakage tendency, oil separation, evaporation loss and rust protection became worse after water was added. This is thought that added water makes the interaction weak between thickener and base oil of grease.

자동차용 스틸휠 디스크부품의 성형불량 및 파손사례분석 (Analysis of Damaged Instance and Forming Fault for Disc Part in Automotive Steel Wheel)

  • 이성희;김무연;김태규;윤호영;강석우
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.234-238
    • /
    • 2006
  • In this research, an analysis of damaged instance and forming fault for disc part in automotive steel wheel was performed. Rolled steel material, which had been used in the manufacturing of the damaged disc part, was prepared for tensile test, quantitative analysis of chemical component and acquirement of scanning electron microscope images. Although the results of mechanical properties and chemical component ratio for the material satisfied the suggested specification, some material inherent problem was found in the scanning electron microscope images. Finally, in an analysis of chemical component for the damaged disc part used in road condition, mismatching of chemical component ratio between the suggested specification and test result was found.

  • PDF

자동차용 알루미늄 합금 휠의 진동특성에 관한 실험적 연구 (An Experimental Study on Vibration Characteristics of AI-alloy Wheel for Passenger Car)

  • 김병삼;지창헌;문상돈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.623-628
    • /
    • 2001
  • The styling of passenger car wheels and their effect on vehicle appearance has increased in importance in recent years. The wheel designer has been given the task of insuring that a wheel design meets its engineering objectives without affecting the styling theme. The wheel and tire system is considered as a vehicle component whose dynamic modal information of the tire/wheel system are employed in the modal synthesis model of the vehicle. The Vibration characteristics of a passenger car wheel play an important role to judge a ride comfortability and quality for a passenger car. In this paper, the vibration characteristics of a AI-alloy and steel wheel for passenger car are studied. Natural frequency, damping and mode shape are determined experimentally by frequency response function method. Results show that wheel material property, size and design are parameter for shift of natural frequency and damping.

  • PDF

자동차용 휠(wheel)의 충격해석 신뢰도 향상을 위한 13도법 충격시험기의 강성 연구 (A Study on the Stiffness of a 13degree-type Impact Tester for Aluminum Wheels)

  • 고길주;김만섭;송현우;양창근
    • 한국자동차공학회논문집
    • /
    • 제14권4호
    • /
    • pp.12-19
    • /
    • 2006
  • It is positively necessary to study on the stiffness of a 13degree-type impact tester in order to improve the fracture prediction of impact testing in wheels using FE(finite-element) analysis. The 13degree-type impact tester consists of an impact striker, a wheel fixer, a steel plate, and four cylindrical rubbers. Important parts of the tester are the steel plate and four cylindrical rubbers which play a role of absorbing impact energy during impact testing. Because of these buffers, the RF(reaction force) variation of the lower part in the 13degree-type impact tester showed the tendency like a damped harmony oscillation during impact testing. In order to investigate the stiffness of a 13degree-type impact tester, this work measured each stiffness of a steel plate and cylindrical rubbers. The stiffness of a cylindrical rubber was measured using a compressive tester. On the other hand, the stiffness of a steel plate was predicted by simulating experimental method using FE analysis.

초탄성 및 점탄성 물성을 고려한 자동차용 휠 베어링 실의 드래그 토크 예측 (Drag Torque Prediction for Automotive Wheel Bearing Seals Considering Viscoelastic as Well as Hyperelastic Material Properties)

  • 이승표
    • Tribology and Lubricants
    • /
    • 제35권5호
    • /
    • pp.267-273
    • /
    • 2019
  • Wheel bearings are important automotive parts that bear the vehicle weight and translate rotation motion; in addition, their seals are components that prevent grease leakage and foreign material from entering from the outside of the bearings. Recently, as the need for electric vehicles and eco-friendly vehicles has been emerging, the reduction in fuel consumption and $CO_2$ emissions are becoming the most important issues for automobile manufacturers. In the case of wheel bearings, seals are a key part of drag torque. In this study, we investigate the prediction of the drag torque taking into consideration the hyperelastic and viscoelastic material properties of automotive wheel bearing seals. Numerical analysis based on the finite element method is conducted for the deformation analyses of the seals. To improve the reliability of the rubber seal analysis, three types of rubber material properties are considered, and analysis is conducted using the hyperelastic material properties. Viscoelastic material property tests are also conducted. Deformation analysis considering the hyperelastic and viscoelastic material properties is performed, and the effects of the viscoelastic material properties are compared with the results obtained by the consideration of the hyperelastic material properties. As a result of these analyses, the drag torque is 0.29 Nm when the hyperelastic characteristics are taken into account, and the drag torque is 0.27 Nm when both the hyperelastic and viscoelastic characteristics are taken into account. Therefore, it is determined that the analysis considering both hyperelastic and viscoelastic characteristics must be performed because of its reliability in predicting the drag torque of the rubber seals.