• Title/Summary/Keyword: 자동차용 휠

Search Result 38, Processing Time 0.042 seconds

Stamping analysis of automotive wheel disc (자동차용 휠 디스크 스탬핑 해석)

  • 김주성;민홍기
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.26-31
    • /
    • 1992
  • 본 연구에서는 ABBAQUS/EXPLICIT CODE를 이용하여 자동차용 휠 디스크의 성형성을 파악하기 위한 모델링 방식과 컴퓨터 시뮬레이션의 결과인 스프링백, 잔류응력, 두께 변화, 변형률 등을 소개하기로 한다. 컴퓨터 시뮬레이션을 휠 디스크 스탬핑에 이용한 경우 스탬핑시 발생하는 여러현상을 쉽게 예측할 수 있으며, 또한 금형의 Geometry 결정 및 홀더와 펀치의 작용하중 등 금형 설계시 요구되는 데이타 확보가 매우 용이하다.

  • PDF

Bearing Life Evaluation of Automotive Wheel Bearing Considering Operation Loading and Rotation Speed (작동하중과 회전속도를 고려한 자동차용 휠 베어링의 수명평가)

  • Lee, Seung Pyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.6
    • /
    • pp.595-602
    • /
    • 2016
  • An automotive wheel bearing is important part that translates rotating motion and bears vehicle weight. Recently, in accordance with the demands for $CO_2$ emission reduction and fuel economy regulation, the requirements for the weight reduction and miniaturization of vehicles has increased. Therefore, life evaluation technology of the bearings has increased in necessity. Since the bearing life is affected by many parameters such as bearing geometry, bearing specifications, and vehicle specifications, it is difficult to predict. In this paper, the bearing life was tested by varying the applied load and rotation speed and comparing them with the basic rating life and modified rating life that were suggested in ISO standards. From the results, it was found that there was a difference between the test life and theoretical life and modified rating life than basic rating life was to be relatively well predicted by test life.

Distortion Analysis for Outer Ring of Automotive Wheel Bearing (자동차용 휠 베어링 외륜의 변형 해석)

  • Lee, Seung Pyo;Kim, Bong Chul;Lee, In Ha;Cho, Young Geol;Kim, Yong Chan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1613-1618
    • /
    • 2012
  • The wheel bearing is one of the important parts in a vehicle for translating power and bearing weight. When it is mounted on the knuckle by using bolts, the distortion of the outer ring including the seal mounting point and raceway occurs. In this study, a numerical analysis was performed to analyze the distortion of the outer ring by using a finite element method. The commercial software MSC.MARC was used for this purpose. Elastoplastic and contact analysis were carried out to compute the clamping behavior of the outer ring, bolts, and knuckle. Because the concavity on the flange of the outer ring affects the deformation, its effect was considered. To verify the reliability of this study, the roundness of the outer ring was measured. The experimental results were comparatively in agreement with the computational results.

Safety Assessment for the 3 Piece Alloy Wheel by Finite Element Method (유한요소법에 의한 3 Piece Alloy Wheel의 안전성 평가)

  • Lee, Yang-Chang;Lee, Joon-Seong;Lee, En-Chul;Lee, Ho-Jung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.885-888
    • /
    • 2009
  • 자동차용 Alloy Wheel은 차량의 수직하중이나 가로 방향 하중, 구동, 제동토크 등 주행 시에 발생하는 여러 형태의 응력을 받으면서 사용되므로 이러한 응력을 견딜 수 있는 강성은 물론 차량 부품으로서의 요구 수명도 만족하여야 한다. 알루미늄 휠은 개발 후 규격에 준하는 내구성 평가를 위하여 반경 방향 부하 내구시험과 굽힘모멘트 내구시험과 주행 중 요철이나 벽돌 등에 의한 노면으로부터 갑작스런 하중에 대한 내충격성 평가를 위한 충격시험이 실행되고 있다. 이러한 시험은 많은 시간이 소요되고 있으며, 또한 시험 중 불합격 판정이 날 경우 또다시 처음의 공정을 모두 거쳐 다시 시험을 하게 된다. 3 Piece와 같은 알루미늄 휠은 여러 공정에 의한 생산되어지기 때문에 많은 시간적, 물질적 손실이 일어나고 있다. 따라서 자동차용 알루미늄 휠의 요구조건을 충분히 만족시키며 소비자의 요구에 맞는 품질과 시간을 충족시켜 기업경쟁력 확보는 물론 원가절감에 의한 기업 경쟁력 향상을 위하여 설계 단계서부터 시험조건을 고려한 내구성 해석에 의한 알루미늄 휠의 시험횟수를 단축하고자 한다. 본 논문에서는 3 Piece 알루미늄 휠의 축(shaft)하중에 의한 내구성 평가에 대하여 CAE시스템을 이용하여 보다 빠르고 정확한 결과를 산출함으로서 설계시간의 단축은 물론 다양한 형상의 제품들을 설계단계에서부터 생산에 이르기까지의 해석활용법을 수립하고자 하였다.

  • PDF

The Study on the Fatigue Life Prediction on Wheels through CAE (CAE를 이용한 자동차용 휠(wheel)의 피로수명 예측기법 연구)

  • 김만섭;고길주;김정헌;양창근;김관묵
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.117-122
    • /
    • 2004
  • The fatigue life in wheels was predicted by simulating the experimental method using Finite-Element analysis. Based on a high frequency fatigue property, calculations of the stresses in wheels were performed by simulating the rotating bending fatigue test. Wheels made of an aluminum alloy(A356.2) were tested using a bending fatigue tester. Results from bending fatigue test showed a linear correlation between bending moment and stress amplitude. Consequently, Finite-Element calculations were performed by a linear analysis. In order to find stress-cycles curves, spoke parts of wheel were tested using a rotary bending fatigue tester. Also, highly accurate Finite-Element analysis requires regression lines and confidence intervals from these results. In conclusion, if the fatigue data related to the material and manufacturing procedure are reliable, the prediction on fatigue lift in wheels can be carried out with high accuracy.

Deformation Analysis for Dust Cap of Automotive Wheel Bearing (자동차용 휠 베어링의 Dust Cap 변형 해석)

  • Lee, Seung-Pyo;Lee, In-Ha;Kim, Bong-Chul;Jin, Sung-Kyu
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.576-581
    • /
    • 2011
  • In this paper, deformation of dust cap in the automotive wheel bearing produced during press-fit process was numerically analyzed. The commercial software, MSC.MARC which is based on the finite element method was used to calculate the deformation. From those results, interference between dust cap and sensor was investigated. To verify the analysis results, experiments were performed and compared experiment results with analysis results. To avoid the interference between dust cap and sensor, 4 modified designs were proposed and the best design was derived from them.