• 제목/요약/키워드: 자동정보 추출

Search Result 1,996, Processing Time 0.034 seconds

Classification of C.elegans Behavioral Phenotypes Using Shape Information (형태적 특징 정보를 이용한 C.Elegans의 개체 분류)

  • Jeon, Mi-Ra;Nah, Won;Hong, Seung-Bum;Baek, Joong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.7C
    • /
    • pp.712-718
    • /
    • 2003
  • C.elegans are often used to study of function of gene, but it is difficult for human observation to distinguish the mutants of C.elegans. To solve this problem, the system, which can classify the mutant types automatically using the computer vision, is now studying. Tn previous work[1], we described the preprocessing method for automated-classification system. In this paper, we introduce shape features, which can be extracted from an acquisition image. We divide the feature into two categories, which are related to size and posture of the worm, and each feature is described mathematically We validate the shape information experimentally. And we use hierarchical clustering algorithm for classification. It reveals that 4 mutants of the worm, which are used in experiment, can be classified with over 90% of success rate.

A Deep Neural Network Technique for Automatic Measurement of Tibial Plateau Angle from Animal X-ray Images (동물 X-ray 영상에서 경골고원각도 자동 검출을 위한 심층신경망 기법 )

  • Jimin Kim;Hyungkyu Kim;Jeonghyeon Ryu;Sunju Lee;Hojoon Kim
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.579-580
    • /
    • 2023
  • 본 논문에서는 동물의 십자인대 질환의 진단지표인 경골고원각도(TPA)를 자동으로 측정하는 딥러닝 소프트웨어 기법을 제안한다. 동물 X-ray 영상에서 나타나는 피사체의 위치와 형태에 대한 다양한 변이는 TPA(Tibial Plateau Angle) 지표 산출에 필요한 특징점 검출과정에서 학습 효율을 현저하게 저하시킨다. 이에 본 연구에서는 YOLO(You Only Look Once) 기반 모델을 사용하여 일차적으로 경골영역의 분할 단계를 수행하고, 이어서 경골 상단부의 과간융기와 복사뼈의 중심점을 찾는 과정을 Resnet 기반의 특징점 추출 모듈로서 구현함으로써 학습의 효율과 지표 검출의 정확도를 향상시켰다. 총 201 개의 실제 X-ray 영상을 사용하여 학습 속도와 영역 분할 및 특징점 추출의 정확도 측면을 고려함으로 제안된 이론의 타당성을 실험적으로 평가하였다.

Keyword Extraction from News Corpus using Modified TF-IDF (TF-IDF의 변형을 이용한 전자뉴스에서의 키워드 추출 기법)

  • Lee, Sung-Jick;Kim, Han-Joon
    • The Journal of Society for e-Business Studies
    • /
    • v.14 no.4
    • /
    • pp.59-73
    • /
    • 2009
  • Keyword extraction is an important and essential technique for text mining applications such as information retrieval, text categorization, summarization and topic detection. A set of keywords extracted from a large-scale electronic document data are used for significant features for text mining algorithms and they contribute to improve the performance of document browsing, topic detection, and automated text classification. This paper presents a keyword extraction technique that can be used to detect topics for each news domain from a large document collection of internet news portal sites. Basically, we have used six variants of traditional TF-IDF weighting model. On top of the TF-IDF model, we propose a word filtering technique called 'cross-domain comparison filtering'. To prove effectiveness of our method, we have analyzed usefulness of keywords extracted from Korean news articles and have presented changes of the keywords over time of each news domain.

  • PDF

False Minutiae Filtering Algorithm for Fingerprint Identification System (자동 지문 인식을 위한 의사 특징점 제거 알고리즘)

  • Yang, Ji-Sung;Ahn, Do-Sung;Kim, Hak-Il
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.807-811
    • /
    • 1999
  • 자동 지문 인식을 위한 특징점 추출 과정에서 얻은 특징점에는 지문 획득시 발생하는 잡음과 전처리 과정으로 인한 정보의 손실에 의해 상당량의 의사 특징점이 포함되어 있다. 본 논문에서는 특징점들로 구성된 지문의 특징량에서 잡음이라고 할 수 있는 의사 특징점을 제거하는 알고리즘을 제안한다. 제안하는 알고리즘은 후보 특징점 목록에서 세선화된 지문 화상의 구조적 특성을 고려하여 복원 가능 영역에 속하고 의사 특징점이라고 간주되는 특징점을 선택한다. 이와 같이 선택된 특징점이 세선화 화상에 위치하는 영역은 잡음에 의해 잘못 세선화된 부분이기 때문에 해당 영역을 올바르게 재구성하고 후보 특징점 목록에서 선택한 특징점을 삭제한다. 재구성된 세선화 화상에서 지문 원화상의 부영역별 방향과 지문의 구조적 특성을 근거로 후보 특징점이 위치한 영역의 패턴을 검사하여 진짜 특징점만을 선택함으로써 의사 특징점을 제거하게 된다. NIST sdb 14의 지문 화상을 알고리즘에 적용한 결과는 정추출율 손실 대비 높은 오추출율 개선을 얻었음을 보여주고 있다.

  • PDF

Auto-Segmentation Algorithm For Liver-Vessel From Abdominal MDCT Image Using Morphological Filtering (Morphological Filtering을 이용한 복부 MDCT 영상의 간혈관 자동 추출 알고리즘)

  • Park, Chun-Ja;Ryu, Gang-Min;Park, Jong-Won
    • Annual Conference of KIPS
    • /
    • 2005.05a
    • /
    • pp.819-822
    • /
    • 2005
  • 본 연구는 MDCT 영상을 이용하여 인체의 장기인 간을 추출하고 그 간 내부의 혈관을 추출하는 알고리즘을 제안하였다. 간에는 2개의 주요혈관이 있는데 생체 간 이식 수술시 필수적인 간의 절개 비율 및 간 내의 혈관 모습들을 제공하여 의료진에게 수술 전 혈관 형태에 대한 정확히 정보를 파악하도록 함으로써 혈관의 손상을 최대한으로 줄일 수 있도록 하여 수술 성공률을 높이는데 중요한 역할을 할 수 있다. 간을 이식 할 때 기증자와 수혜자가 동시에 생존하기 위해서는 기증자의 간으 크기가 중요하며 둘다 생존하기 위해서는 기증자는 자신의 간의 35% 이상을 남겨야 하며 수혜자 또한 생존을 위해 자신의 간의 40% 이상에 해당하는 간을 이식 받아야 하는데 간 이식에 있어서 절단 부분을 결정하는데 중요한 중간 정맥을 찾아내어 보여 줌으로써 중간 정맥을 중심으로 3가닥의 굵은 혈관과 주변혈관의 손상을 최소화하고 비율을 잘 맞추어 절단 할 수 있도록 수술하는데 도움을 줄 수 있다. 각 혈관은 원형성과 다양한 각도를 갖는 막대형의 형태를 가지고 있다는 특징을 이용해 morphological filtering을 통해 추출한 후 조합하여 재구성을 하여 혈관의 모습으로 생성해 낼 수 있었다.

  • PDF

Iterative learning system design for relation extraction and knowledge base population (관계 추출 및 지식베이스 확장을 위한 반복 학습 시스템 설계)

  • Jeong, Yong-Bin;Nam, Sang-Ha;Kim, Ji-Seong;Lee, Min-Ho;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.185-189
    • /
    • 2019
  • 관계추출기의 학습을 위해서는 많은 학습 데이터가 필요한데, 사람이 모으게 되면 많은 비용이 필요하여 원격 지도 학습을 이용한 데이터 수집이 많은 연구에서 사용되고 있다. 원격 지도 학습은 지식베이스를 기반으로 학습 데이터를 자동으로 만들어 내는 방식이기에 비용이 거의 들지 않지만, 지식베이스의 질과 양에 영향을 받는다. 본 연구는 원격 지도 학습을 기본으로 관계추출기의 성능을 향상 시키고, 지식베이스를 확장하는 방안으로 반복학습을 제안한다. 실험을 적은 비용으로 빠르게 진행하기 위해 반복학습을 자동화 하는 시스템을 설계하여 실험을 하였고, 이 시스템으로 관계추출기의 성능이 향상 될 수 있는 가능성을 보였으며, 반복학습을 통한 지식베이스의 확장 방안을 제시한다.

  • PDF

Designing a Repository Independent Model for Mining and Analyzing Heterogeneous Bug Tracking Systems (다형의 버그 추적 시스템 마이닝 및 분석을 위한 저장소 독립 모델 설계)

  • Lee, Jae-Kwon;Jung, Woo-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.9
    • /
    • pp.103-115
    • /
    • 2014
  • In this paper, we propose UniBAS(Unified Bug Analysis System) to provide a unified repository model by integrating the extracted data from the heterogeneous bug tracking systems. The UniBAS reduces the cost and complexity of the MSR(Mining Software Repositories) research process and enables the researchers to focus on their logics rather than the tedious and repeated works such as extracting repositories, processing data and building analysis models. Additionally, the system not only extracts the data but also automatically generates database tables, views and stored procedures which are required for the researchers to perform query-based analysis easily. It can also generate various types of exported files for utilizing external analysis tools or managing research data. A case study of detecting duplicate bug reports from the Firfox project of the Mozilla site has been performed based on the UniBAS in order to evaluate the usefulness of the system. The results of the experiments with various algorithms of natural language processing and flexible querying to the automatically extracted data also showed the effectiveness of the proposed system.

Middle Ear Disease Automatic Decision Scheme using HoG Descriptor (HoG 기술자를 이용한 중이염 자동 판별 방법)

  • Jung, Na-ra;Song, Jae-wook;Choi, Ho-Hyoung;Kang, Hyun-soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.621-629
    • /
    • 2016
  • This paper presents a decision method of middle ear disease which is developed in children and adults. In the proposed method, features are extracted from the middle ear disease images and normal images using HoG (histogram of oriented gradient) descriptor and the extracted features are learned by SVM (support vector machine) classifier. To obtain an input vector into SVM, an input image is resized to a predefined size and then the resized image is partitioned into 16 blocks each of which is partitioned into 4 sub-blocks (namely cell). Finally, the feature vector with 576 components is given by using HoG with 9 bins and it is used as SVM learning and classification. Input images are classified by SVM classifier based on the model of learning features. Experimental results show that the proposed method yields the precision of over 90% in decision.

A Study on Auti-extraction Methods of Heart Rate from ECG (ECG 심박수의 자동 추출법에 관한 연구)

  • Cho, Eun-Seuk;Cha, Sam;Lee, Sangsik;Lee, Ki Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.3
    • /
    • pp.23-29
    • /
    • 2009
  • The heart sends blood to the body with heart rate. When heart rate for men is from 60 to 80 per minute, he is generally normal. However, if heart rate is less than the normal heart rate, the symptom is called by bradycardia. Otherwise, the symptom is called by tachycardia. These symptoms make him even to death. Therefore, heartbeat rate has a very important role in a healthy life. In this study, we studied on auto-extracting methods of heart rates from ECG, and compared them with those measured by naked eyes. The first auto-extracting method employs the 2-order differential equations to extract heart rate. The second method uses the autocorrelation coefficients to detect heart rate. To verify its efficacy and validity in practical applications, these method has been applied to MIT/BIH database.

  • PDF

Real-time Video Matting for Mobile Device (모바일 환경에서 실시간 영상 전경 추출 연구)

  • Yoon, Jong-Chul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.5
    • /
    • pp.487-492
    • /
    • 2018
  • Recently, various applications for image processing have been ported to the mobile environment due to the expansion of the image shooting on the mobile device. However, in the case of extracting the image foreground, which is one of the most important functions of image synthesis, is difficult since it needs complex calculation. In this paper, we propose an video synthesis technique that can divide images captured by mobile devices into foreground / background and combine them in real time on target images. Considering the characteristics of mobile shooting, our system can extract automatically foreground of input video that contains weak motion when shooting. Using SIMD and GPGPU-based acceleration algorithms, SD-quality images can be processed on mobile in real time.