• Title/Summary/Keyword: 자동정보 추출

Search Result 1,996, Processing Time 0.029 seconds

String Kernel-based Relation Extraction using Lexical Patterns of Predicate-Argument Structure (술어-논항 구조의 어휘 패턴을 이용한 스트링 커널 기반 관계 추출)

  • Jeong, Chang-Hoo;Choi, Sung-Pil;Chun, Hong-Woo;Hong, Soon-Chan;Jung, Han-Min
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.327-329
    • /
    • 2012
  • 문서 내에 존재하는 중요한 개체들 간의 관계를 자동으로 추출할 때 개체와 개체 사이의 상호작용 표현에 중요하게 관여하는 핵심자질을 잘 선택할수록 빠르고 정확하게 관계 추출을 수행할 수 있다. 본 논문에서는 개체 쌍 사이에 존재하는 술어-논항 구조의 어휘 패턴 문자열을 정규화해서 스트링 커널에 적용하는 관계 추출 방법을 제안한다. 제안된 시스템의 성능 평가를 위해서 과학기술문헌에 존재하는 중요한 개체들 간의 연관관계 추출 성능 평가를 수행하는 테스트컬렉션을 자체적으로 구축하였으며 실험을 통하여 제안된 방법의 성능을 측정하였다. 정확도 실험 결과, 스트링 커널의 입력으로 문장 전체를 사용한 경우에는 55.0693%, 개체 쌍 사이의 문자열을 사용한 경우에는 61.0331%, 그리고 술어-논항 구조의 어휘 패턴 문자열을 사용한 경우에는 69.14%로, 술어-논항 구조의 어휘 패턴 문자열을 사용했을 때 성능이 가장 좋게 나타났다. 결론적으로 문장 내의 술어-논항 구조를 분석하여 정규화된 어휘 패턴을 생성하고 이렇게 생성된 문자열을 스트링 커널에 적용하는 방법이 관계 추출에 유용한 방법임을 알 수 있었다.

Recognition of Concrete Surface Cracks using ART1-based RBF Network (ART1 기반 RBF 네트워크를 이용한 콘크리트 균열 인식)

  • Kim, Kyung-Ran;Her, Joo-Yong;Kim, Kwang-Baek;Ahn, Sang-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.360-365
    • /
    • 2005
  • 본 논문에서는 콘크리트 표면 균열 영상에서 균열을 효율적으로 추출하기 위한 화상처리 기법과 ART1 기반 RBF 네트워크를 제안하여 균열의 방향성을 인식한다. 본 논문에서 사용된 화상처리 기법으로는 균열 영상의 빛을 보정하기 위한 모폴로지 기법인 채움(Closing)연산을 적용하고 Sobel 마스크를 적용하여 균열 영상의 에지를 추출한 후 반복 이진화를 적용하여 균열 영상을 이진화한다. 이진화 된 영상에 두 차례에 걸쳐 잡음제거를 수행하여 콘크리트 표면 균열 영상으로부터 균열을 추출한다. 본 논문에서는 추출된 균열을 ART1 기반 RBF 네트워크에 적용하여 균열의 방향성(횡방향, 종방향, $-45^{\circ}$방향, $45^{\circ}$방향)을 자동으로 인식할 수 있는 방법을 제안한다. 제안된 ART1 기반 RBF 네트워크는 입력층과 중간층으로의 학습은 ART1을 적용하고 중간층과 출력층 간의 학습은 Delta 학습 방법을 적용한다. 실제 콘크리트 균열 영상을 적용하여 실험한 결과, 콘크리트 표면 균열 영상에서 효율적으로 균열을 추출할 수 있었고 제안된 ART1 기반 RBF 네트워크가 추출된 균열의 방향성 인식에 효율적인 것을 확인하였다.

  • PDF

Comparison of Accuracy for Chromosome Classification using Different Feature Extraction Methods based on Density Profile (Density Profile 추출 방법에 따른 염색체 분류정확도 비교분석)

  • Choi, Kwang-Won;Song, Hae-Jung;Kim, Jong-Dae;Kim, Yu-Seop;Lee, Wan-Yeon;Park, Chan-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.226-229
    • /
    • 2010
  • 본 연구에서는 다양한 density profile 특징추출에 기반한 염색체 자동분류방법들의 성능을 비교분석하였다. density profile은 염색체의 밴드패턴을 가장 잘 표현한 특징으로 염색체의 중심축을 구성하는 화소들의 밝기 값을 추출하는 방법이다. 염색체의 밴드패턴은 염색체의 끝단까지를 잘 표현해주어야만 정확한 염색체번호를 확인할 수 있다. 따라서 염색체의 중심축을 추출하여 염색체 끝단까지 확장 처리한 방법에 대한 성능을 확인하였다. 염색체 중심축에 위치한 화소만을 이용한 프로파일은 잡음에 민감할 수 있으므로 이를 해결하기 위하여 염색체의 중심축에 대한 화소 값 대신 주변 밝기 값들에 대한 평균을 이용한 국소평균방법과 중심축의 수직라인 상에 존재하는 화소 값들에 대한 평균을 구한 수직평균방법을 비교하였다. 분류알고리즘은 k-NN을 사용하였고, 실험데이터는 (주)Gendix 로부터 제공받은 임상적으로 정상인 100명(남자 50명, 여자 50명)으로부터 추출한 4600개의 염색체 영상을 훈련데이터와 테스트데이터로 각각 50%씩 랜덤하게 분리하여 실험하였다. 실험결과 중심축을 확장하고 수직평균에 대한 프로파일을 특징으로 추출하여 분류한 경우가 가장 좋은 성능을 보였다.

  • PDF

Development of Postal Image Acquisition System for Sequence Sorting (우편물 이미지 획득 시스템 개발)

  • Song, Jae-Gwan;Lim, Kil-Tak;Kim, Doo-Sik;Nam, Yun-Seok
    • Annual Conference of KIPS
    • /
    • 2001.10b
    • /
    • pp.1217-1220
    • /
    • 2001
  • 우편물의 자동구분은 우편물을 OVIS(OCR-Video coding Integrated System)에 자동으로 공급하고 우편물의 수취인 주소영역을 카메라를 이용하여 획득한 다음 우편번호를 인식하여 바코드로 변환하여 인쇄하게 되고, 이 우편물은 LSM(Letter Sorting Machine)으로 보내져 BCR(Bar Code Reader)에 의해 인쇄된 바코드를 판독하여 행선지별로 구분하는 과정을 거친다. 주소의 번지 이하 부분은 배달원의 수작업에 의해 최종 배달지점 순서대로 정렬한 다음 배달하게 된다. 이 부분의 작업에 소요되는 시간은 배달원 일일 평균 4 시간에 달하며 원가절감 대상으로 지적되고 있다. 이 부분을 자동화하여 우편물 처리시간을 단축하고 생산성을 향상하는 방안이 대두되고 있으며, 이를 해결하기 위해 번지 부분까지 OCR을 이용, 인식하여 우편번호 및 순로 데이터 베이스에서 인식결과에 해당하는 코드를 추출하여 해당 구분 칸으로 우편물을 분류하는 방식을 택하면 집배원이 우편물을 배달하는 순로까지 자동으로 정렬할 수 있게 된다. 본 논문은 수취인 주소영역의 주소부분을 자동판독하기 위한 시스템을 개발한 내용을 다루고자 한다.

  • PDF

Personalized EPG Application using Automatic User Preference Learning Method (사용자 선호도 자동 학습 방법을 이용한 개인용 전자 프로그램 가이드 어플리케이션 개발)

  • Lim J;Jeong H;Kang S;Kim M;Kang K
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.151-154
    • /
    • 2004
  • 디지털 방송의 시작과 함께, 지상파, 위성, 케이블과 같은 다양한 매체를 통한 다채널 방송 시청 환경의 도래는 사용자에게 많은 방송 프로그램 시청 정보를 전달하게 되었다. 이와 더불어, 방송 단말에 전송된 다양한 방송 프로그램 정보를 탐색하고 선호 방송 프로그램을 선별하기 위해서는 사용자에게 많은 노력이 요구된다. 이러한 요구에 따라, 똔 논문에서는 다채널 방송 시청 환경 하에서 사용자의 방송 프로그램 시청 히스토리를 분석하고, 특정 시간에 따른 사용자의 방송 프로그램 시청 패턴을 추출하여 방송 프로그램 장르에 대한 사용자 선호도를 자동으로 계산하는 알고리즘을 제안하고, MPEG-7 MDS 구조에 따른 사용자 선호도 서술과 사용자의 선호도에 따라 방송 프로그램을 자동적으로 추천하는 TV 프로그램 추천 어플리케이션을 소개한다 본 실험을 위해 실제 연령대별, 성별, 시간대별로 사용자의 TV 시청 자료를 사용하였으며, 실험결과를 통해 본 논문에 제안된 베이시안 네트워크 기반 사용자 자동 학습 알고리즘이 효과적으로 사용자 선호도를 학습할 수 있음을 확인하였다.

  • PDF

Automatic UML-based Test Data Generating Tool: AUTEG (UML기반의 테스트 데이타 자동생성 도구 : AUTEG)

  • Kim, Cheong-Ah;Choi, Byoung-Ju
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.3
    • /
    • pp.268-276
    • /
    • 2002
  • In this paper we suggest a method to produce automatically teat data using UML development diagrams, and analytically describe the application of a tool, Automatic UML-based Test Data Generation (AUTEG) developed using XML technology, to the examples of insurance system. Our AUTEG automatically generates test diagrams that enable to detect errors existing at the interface area between modules composing the whole system, along with test data by applying the existing white-box test technique to the test diagram. Our AUTEG can be applied to the integration test as well as the system test and using the tool, users may make the unit modules of the integration test into several groups.

Hand Gesture Tracking and Recognition for Video Editing (비디오 편집을 위한 손동작 추적 및 인식)

  • Park Ho-Sik;Cha Seung-Joo;Jung Ha-Young;Ra Sang-Dong;Bae Cheol-Soo
    • Annual Conference of KIPS
    • /
    • 2006.05a
    • /
    • pp.697-700
    • /
    • 2006
  • 본 논문에서는 동작에 근거한 새로운 비디오 편집 방법을 제안한다. 강의 비디오에서 전자 슬라이드 내용을 자동으로 검출하고 비디오와 동기화한다. 각 동기화된 표제의 동작을 연속적으로 추적 및 인식한 후, 등록된 화면과 슬라이드에서 변환 내용을 찾아 동작이 일어 나는 영역을 확인한다. 인식된 동작과 등록된 지점에서 슬라이드의 정보를 추출하여 슬라이드 영역을 부분적으로 확대한다거나 원본 비디오를 자동으로 편집함으로써 비디오의 질을 향상 시킬 수가 있다. 2 개의 비디오 가지고 실험한 결과 각각 95.5, 96.4%의 동작 인식 결과를 얻을 수 있었다.

  • PDF

Estimation of Document Similarity using Semantic Kernel Derived from Helmholtz Machines (헬름홀츠머신 학습 기반의 의미 커널을 이용한 문서 유사도 측정)

  • 장정호;김유섭;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.440-442
    • /
    • 2003
  • 문서 집합 내의 개념 또는 의미 관계의 자동 분석은 보다 효율적인 정보 획득과 단어수준 이상의 개념 수준에서의 운서 비교를 가능하게 한다. 본 논문에서는 은닉변수모델을 이용하여 문서 집합으로부터 단어들 간의 의미관계를 자동적으로 추출하고 이를 통해 문서간 유사도 측정을 효과적으로 하기 위한 방안을 제시한다. 은닉변수 모델로는 다중요인모델의 학습이 용이한 헬름홀츠 머신을 활용하묘 이의 학습 결과에 기반하여, 문서간 비교를 한 의미 커널(semantic kernel)을 구축한다. 2개의 문서 집합 HEDLINE과 CACM 데이터에 대한 검색 실험에서, 제안된 기법을 적응함으로써 기본 VSM(Vector Space Model) 에 비해 20% 이상의 평균 정확도 향상을 이를 수 있었다.

  • PDF

Sentence Compression of Headline-style Abstract for Displaying in Small Devices (작은 화면 기기에서의 출력을 위한 신문기사 헤드라인 형식의 문장 축약 시스템)

  • Lee, Kong-Joo
    • The KIPS Transactions:PartB
    • /
    • v.12B no.6 s.102
    • /
    • pp.691-696
    • /
    • 2005
  • In this paper, we present a pilot system that tn compress a Korean sentence automatically using knowledge extracted from news articles and their headlines. A sot of compressed sentences can be presented as an abstraction of a document. As a compressed sentence is of headline-style, it could be easily displayed on small devices, such as mobile phones and other handhold devices. Our compressing system has shown to be promising through a preliminary experiment.

Automatic Stroke Extraction of TrueType Font and Handwriting of Hangul (한글 트루타입폰트 및 손글씨의 자동 획 분할 알고리즘)

  • Kwak, Yoon-Seok;Koo, Sang-Ok;Jung, Soon-Ki
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06b
    • /
    • pp.275-280
    • /
    • 2008
  • 본 논문에서는 한글 글립(glyph)의 형태학적 분석을 통해 자동으로 획을 분할하는 방법을 제안한다. 제안된 방법은 thinning된 한글 글립의 골격(skeleton) 이미지를 기반으로, 획 분리, 획 병합, 그리고 획 볼륨 복원의 세가지 단계를 거쳐 한글의 기본 획들을 추출해 낸다. 실험 결과, 트루타입폰트(TrueType Font)에 대해서는 80%, 손글씨(Handwriting) 글립에 대해서는 72%의 획 분할 정확도를 보였다. 본 논문에서 제안한 방법으로 획득된 획 정보를 이용하여, 향후 한글 손글씨 생성을 위한 연구를 하고자 한다.

  • PDF