• Title/Summary/Keyword: 자동정보 추출

Search Result 1,996, Processing Time 0.041 seconds

Construction of CT Image data Automatic Recognition System for Diagnosis of Urinary Stone Based on AI Plaform (인공지능 플랫폼기반 요로결석진단을 위한 CT 영상 데이터 자동판독 시스템 구축)

  • Noh, Si-Hyeong;Lee, Chungsub;Kim, Tae-Hoon;Lee, Yun Oh;Park, Sung Bin;Yoon, Kwon-Ha;Jeong, Chang-Won
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.928-930
    • /
    • 2020
  • 본 논문은 인공지능 플랫폼 기반의 요로결석 진단을 위한 CT 영상 데이터 자동판독 시스템에 대해 기술하고자 한다. 제안한 시스템은 웹 기반의 플랫폼을 기반으로 하며, 인공지능 기반의 진단 알고리즘을 장착하여 빠르게 요로결석 환자의 스크리닝에 목적을 두고 있다. 병원정보시스템의 PACS와 EMR과 연계와 Deep learning 진단 알고리즘을 적용한 요로결석 자동판독 시스템을 개발하였다. 특히, 기 구축된 인공지능 플랫폼을 통해 추출한 데이터셋을 기반으로 진단 알고리즘 개발 방법과 수행 결과를 보인다. 제안한 시스템은 요로결석 진단과 수술여부에 의사결정지원 시스템으로 임상에서 활용될 것으로 기대하고 있다.

Automatic Extraction of the Land Readjustment Paddy for High-level Land Cover Classification (토지 피복 세분류를 위한 경지 정리 논 자동 추출)

  • Yeom, Jun Ho;Kim, Yong Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.5
    • /
    • pp.443-450
    • /
    • 2014
  • To fulfill the recent increasement in the public and private demands for various spatial data, the central and local governments started to produce those data. The low-level land cover map has been produced since 2000, yet the production of high-level land covered map has started later in 2010, and recently, a few regions was completed recently. Although many studies have been carried to improve the quality of land that covered in the map, most of them have been focused on the low-level and mid-level classifications. For that reason, the study for high-level classification is still insufficient. Therefore, in this study, we suggested the automatic extraction of land readjustment for paddy land that updated in the mid-level land mapping. At the study, the RapidEye satellite images, which consider efficient to apply in the agricultural field, were used, and the high pass filtering emphasized the outline of paddy field. Also, the binary images of the paddy outlines were generated from the Otsu thresholding. The boundary information of paddy field was extracted from the image-to-map registrations and masking of paddy land cover. Lastly, the snapped edges were linked, as well as the linear features of paddy outlines were extracted by the regional Hough line extraction. The start and end points that were close to each other were linked to complete the paddy field outlines. In fact, the boundary of readjusted paddy fields was able to be extracted efficiently. We could conclude in that this study contributed to the automatic production of a high-level land cover map for paddy fields.

An Automatic Schema Generation System based on the Contents for Integrating Web Information Sources (웹 정보원 통합을 위한 내용 기반의 스키마 자동생성시스템)

  • Kwak, Jun-Young;Bae, Jong-Min
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.6
    • /
    • pp.77-86
    • /
    • 2008
  • The Web information sources can be regarded as the largest distributed database to the users. By virtually integrating the distributed information sources and regarding them as a single huge database, we can query the database to extract information. This capability is important to develop Web application programs. We have to infer a database schema from browsing-oriented Web documents in order to integrate databases. This paper presents a heuristic algorithm to infer the XML Schema fully automatically from semi-structured Web documents. The algorithm first extracts candidate pattern regions based on predefined structure-making tags, and determines a target pattern region using a few heuristic factors, and then derives XML Schema extraction rules from the target pattern region. The schema extraction rule is represented in XQuery, which makes development of various application systems possible using open standard XML tools. We also present the experimental results for several public web sources to show the effectiveness of the algorithm.

  • PDF

Web Structure Mining by Extracting Hyperlinks from Web Documents and Access Logs (웹 문서와 접근로그의 하이퍼링크 추출을 통한 웹 구조 마이닝)

  • Lee, Seong-Dae;Park, Hyu-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.11
    • /
    • pp.2059-2071
    • /
    • 2007
  • If the correct structure of Web site is known, the information provider can discover users# behavior patterns and characteristics for better services, and users can find useful information easily and exactly. There may be some difficulties, however, to extract the exact structure of Web site because documents one the Web tend to be changed frequently. This paper proposes new method for extracting such Web structure automatically. The method consists of two phases. The first phase extracts the hyperlinks among Web documents, and then constructs a directed graph to represent the structure of Web site. It has limitations, however, to discover the hyperlinks in Flash and Java Applet. The second phase is to find such hidden hyperlinks by using Web access log. It fist extracts the click streams from the access log, and then extract the hidden hyperlinks by comparing with the directed graph. Several experiments have been conducted to evaluate the proposed method.

Automatic Construction of Foreign Word Transliteration Dictionary from English-Korean Parallel Corpus (영-한 병렬 코퍼스로부터 외래어 표기 사전의 자동 구축)

  • Lee, Jae Sung
    • The Journal of Korean Association of Computer Education
    • /
    • v.6 no.2
    • /
    • pp.9-21
    • /
    • 2003
  • This paper proposes an automatic construction system for transliteration dictionary from English-Korean parallel corpus. The system works in 3 steps: it extracts all nouns from Korean documents as the first step, filters transliterated foreign word nouns out of them with the language identification method as the second step, and extracts the corresponding English words by using a probabilistic alignment method as the final step. Specially, the fact that there is a corresponding English word in most cases, is utilized to extract the purely transliterated part from a Koreans word phrase, which is usually used in combined forms with Korean endings(Eomi) or particles(Josa). Moreover, the direct phonetic comparison is done to the words in two different alphabet systems without converting them to the same alphabet system. The experiment showed that the performance was influenced by the first and the second preprocessing steps; the most efficient model among manually preprocessed ones showed 85.4% recall, 91.0% precision and the most efficient model among fully automated ones got 68.3% recall, 89.2% precision.

  • PDF

An Automatic Extraction Algorithm of Structure Boundary from Terrestrial LIDAR Data (지상라이다 데이터를 이용한 구조물 윤곽선 자동 추출 알고리즘 연구)

  • Roh, Yi-Ju;Kim, Nam-Woon;Yun, Kee-Bang;Jung, Kyeong-Hoon;Kang, Dong-Wook;Kim, Ki-Doo
    • 전자공학회논문지 IE
    • /
    • v.46 no.1
    • /
    • pp.7-15
    • /
    • 2009
  • In this paper, automatic structure boundary extraction is proposed using terrestrial LIDAR (Light Detection And Ranging) in 3-dimensional data. This paper describes an algorithm which does not use pictures and pre-processing. In this algorithm, an efficient decimation method is proposed, considering the size of object, the amount of LIDAR data, etc. From these decimated data, object points and non-object points are distinguished using distance information which is a major features of LIDAR. After that, large and small values are extracted using local variations, which can be candidate for boundary. Finally, a boundary line is drawn based on the boundary point candidates. In this way, the approximate boundary of the object is extracted.

Automatic Face Region Detection and Tracking for Robustness in Rotation using the Estimation Function (평가 함수를 사용하여 회전에 강건한 자동 얼굴 영역 검출과 추적)

  • Kim, Ki-Sang;Kim, Gye-Young;Choi, Hyung-Il
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.9
    • /
    • pp.1-9
    • /
    • 2008
  • In this paper, we proposed automatic face detection and tracking which is robustness in rotation. To detect a face image in complicated background and various illuminating conditions, we used face skin color detection. we used Harris corner detector for extract facial feature points. After that, we need to track these feature points. In traditional method, Lucas-Kanade feature tracker doesn't delete useless feature points by occlusion in current scene (face rotation or out of camera). So we proposed the estimation function, which delete useless feature points. The method of delete useless feature points is estimation value at each pyramidal level. When the face was occlusion, we deleted these feature points. This can be robustness to face rotation and out of camera. In experimental results, we assess that using estimation function is better than traditional feature tracker.

Implementation of Intelligent Compression System For Animation Image Data (불특정 애니메이션 영상을 위한 지능형 압축알고리즘의 구현)

  • 정선이
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2000.11a
    • /
    • pp.159-162
    • /
    • 2000
  • 현재 대부분의 영상 압축 기법들은 영상의 특징에 따라 최적화된 전용 압축기법을 사용한다. 본 논문에서는 입력영상에 대한 특징 정보를 사전에 가지고 있지 않더라도 입력되는 영상의 Histogram을 자동 인식하고, 추출된 Histogram 특성에 따라 각 영상의 특징에 맞는 적응적 압축기법을 적용할 수 있도록 히스토그램특성 분석기준을 제안하였으며, 이를 구현하였다.

  • PDF

An Inferencing Semantics from the Image Objects (이미지 객체로부터 의미 정보 추론)

  • Kim, Do-Yeon;Kim, Chyl-Woon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.3
    • /
    • pp.409-414
    • /
    • 2013
  • With the increase of multimedia information such as images, researches have been realized on how to extract the high-level semantic information from low-level visual information, and a variety of techniques have been proposed to generate this information automatically. However, most of these technologies extract the semantic information between single images, it's difficult to extract semantic information when a combination of multiple objects within the image. In this paper, we extract the visual features of objects within the image and training images stored in the DB and the features of each object are defined by measuring the similarity. Using ontology reasoner, each object feature within images infers the semantic information by positional relation and associative relation. With this, it's possible to infer semantic information between objects within images, we proposed a method for inferring more complicated and a variety of high-level semantic information.